BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

75 related articles for article (PubMed ID: 24926991)

  • 1. Targeting the NF-E2-related factor 2 pathway: a novel strategy for glioblastoma (review).
    Zhu J; Wang H; Fan Y; Lin Y; Zhang L; Ji X; Zhou M
    Oncol Rep; 2014 Aug; 32(2):443-50. PubMed ID: 24926991
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Targeting the NF-E2-related factor 2 pathway for overcoming leukemia.
    Harifi-Mood MS; Daroudi M; Darroudi M; Naseri K; Samarghandian S; Farkhondeh T
    Int J Biol Macromol; 2023 Dec; 253(Pt 8):127594. PubMed ID: 37890739
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pharmacological targeting of one‑carbon metabolism as a novel therapeutic strategy for glioblastoma.
    Sun Y; Mu G; Xue Z; Li X; Lin X; Han M
    J Transl Med; 2023 Jun; 21(1):424. PubMed ID: 37386497
    [No Abstract]   [Full Text] [Related]  

  • 4. Role of the Keap1-Nrf2 pathway in cancer.
    Leinonen HM; Kansanen E; Pölönen P; Heinäniemi M; Levonen AL
    Adv Cancer Res; 2014; 122():281-320. PubMed ID: 24974185
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Emerging function of mTORC2 as a core regulator in glioblastoma: metabolic reprogramming and drug resistance.
    Wu SH; Bi JF; Cloughesy T; Cavenee WK; Mischel PS
    Cancer Biol Med; 2014 Dec; 11(4):255-63. PubMed ID: 25610711
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pitfalls in the neuroimaging of glioblastoma in the era of antiangiogenic and immuno/targeted therapy - detecting illusive disease, defining response.
    Huang RY; Neagu MR; Reardon DA; Wen PY
    Front Neurol; 2015; 6():33. PubMed ID: 25755649
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tumour suppressor TRIM33 targets nuclear β-catenin degradation.
    Xue J; Chen Y; Wu Y; Wang Z; Zhou A; Zhang S; Lin K; Aldape K; Majumder S; Lu Z; Huang S
    Nat Commun; 2015 Feb; 6():6156. PubMed ID: 25639486
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glioblastoma stem-like cells: at the root of tumor recurrence and a therapeutic target.
    Jackson M; Hassiotou F; Nowak A
    Carcinogenesis; 2015 Feb; 36(2):177-85. PubMed ID: 25504149
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glioblastoma heterogeneity and cancer cell plasticity.
    Friedmann-Morvinski D
    Crit Rev Oncog; 2014; 19(5):327-36. PubMed ID: 25404148
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Severe hypouricemia: biochemical expression of asymptomatic xanthinuria.
    Ducorps M; Hélie C; Mayaudon H; Bauduceau B
    Clin Chem; 1995 Dec; 41(12 Pt 1):1789-90. PubMed ID: 7497632
    [No Abstract]   [Full Text] [Related]  

  • 11. Crosstalk between Nrf2 and Notch signaling.
    Wakabayashi N; Chartoumpekis DV; Kensler TW
    Free Radic Biol Med; 2015 Nov; 88(Pt B):158-167. PubMed ID: 26003520
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two cilengitide regimens in combination with standard treatment for patients with newly diagnosed glioblastoma and unmethylated MGMT gene promoter: results of the open-label, controlled, randomized phase II CORE study.
    Nabors LB; Fink KL; Mikkelsen T; Grujicic D; Tarnawski R; Nam DH; Mazurkiewicz M; Salacz M; Ashby L; Zagonel V; Depenni R; Perry JR; Hicking C; Picard M; Hegi ME; Lhermitte B; Reardon DA
    Neuro Oncol; 2015 May; 17(5):708-17. PubMed ID: 25762461
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nrf2 activation as target to implement therapeutic treatments.
    Bocci V; Valacchi G
    Front Chem; 2015; 3():4. PubMed ID: 25699252
    [TBL] [Abstract][Full Text] [Related]  

  • 14. miR340 suppresses the stem-like cell function of glioma-initiating cells by targeting tissue plasminogen activator.
    Yamashita D; Kondo T; Ohue S; Takahashi H; Ishikawa M; Matoba R; Suehiro S; Kohno S; Harada H; Tanaka J; Ohnishi T
    Cancer Res; 2015 Mar; 75(6):1123-33. PubMed ID: 25627976
    [TBL] [Abstract][Full Text] [Related]  

  • 15. p53 upregulated modulator of apoptosis sensitizes drug-resistant U251 glioblastoma stem cells to temozolomide through enhanced apoptosis.
    Miao W; Liu X; Wang H; Fan Y; Lian S; Yang X; Wang X; Guo G; Li Q; Wang S
    Mol Med Rep; 2015 Jun; 11(6):4165-73. PubMed ID: 25625235
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dual roles of NRF2 in tumor prevention and progression: possible implications in cancer treatment.
    Moon EJ; Giaccia A
    Free Radic Biol Med; 2015 Feb; 79():292-9. PubMed ID: 25458917
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanisms of intimate and long-distance cross-talk between glioma and myeloid cells: how to break a vicious cycle.
    Wurdinger T; Deumelandt K; van der Vliet HJ; Wesseling P; de Gruijl TD
    Biochim Biophys Acta; 2014 Dec; 1846(2):560-75. PubMed ID: 25453365
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stem cell niche irradiation in glioblastoma: providing a ray of hope?
    Gupta T; Nair V; Jalali R
    CNS Oncol; 2014; 3(5):367-76. PubMed ID: 25363009
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oncogenic KRAS confers chemoresistance by upregulating NRF2.
    Tao S; Wang S; Moghaddam SJ; Ooi A; Chapman E; Wong PK; Zhang DD
    Cancer Res; 2014 Dec; 74(24):7430-41. PubMed ID: 25339352
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Senescence-associated-gene signature identifies genes linked to age, prognosis, and progression of human gliomas.
    Coppola D; Balducci L; Chen DT; Loboda A; Nebozhyn M; Staller A; Fulp WJ; Dalton W; Yeatman T; Brem S
    J Geriatr Oncol; 2014 Oct; 5(4):389-99. PubMed ID: 25220188
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.