These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 24927016)

  • 21. The eyes of deep-sea fish. I: Lens pigmentation, tapeta and visual pigments.
    Douglas RH; Partridge JC; Marshall NJ
    Prog Retin Eye Res; 1998 Oct; 17(4):597-636. PubMed ID: 9777651
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Comparative visual function in elasmobranchs: spatial arrangement and ecological correlates of photoreceptor and ganglion cell distributions.
    Litherland L; Collin SP
    Vis Neurosci; 2008; 25(4):549-61. PubMed ID: 18606042
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ultrastructure and biochemistry of the pineal organ in deep-sea lanternfishes (Myctophidae).
    McNulty JA; Neighbors MA; Horn MH
    Experientia; 1988 Sep; 44(9):740-2. PubMed ID: 2458283
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Relationships between otolith size and fish length in some mesopelagic teleosts (Myctophidae, Paralepididae, Phosichthyidae and Stomiidae).
    Battaglia P; Malara D; Ammendolia G; Romeo T; Andaloro F
    J Fish Biol; 2015 Sep; 87(3):774-82. PubMed ID: 26242808
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The eyes of deep-sea fishes and the changing nature of visual scenes with depth.
    Warrant E
    Philos Trans R Soc Lond B Biol Sci; 2000 Sep; 355(1401):1155-9. PubMed ID: 11079389
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Evolutionary attempts at 4 eyes in vertebrates.
    Schwab IR; Ho V; Roth A; Blankenship TN; Fitzgerald PG
    Trans Am Ophthalmol Soc; 2001; 99():145-56; discussion 156-7. PubMed ID: 11797302
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Trophic ecology of Lampanyctus crocodilus on north-west Mediterranean Sea slopes in relation to reproductive cycle and environmental variables.
    Fanelli E; Papiol V; Cartes JE; Rodriguez-Romeu O
    J Fish Biol; 2014 Jun; 84(6):1654-88. PubMed ID: 24786723
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ontogenic retinal changes in three ecologically distinct elopomorph fishes (Elopomorpha:Teleostei) correlate with light environment and behavior.
    Taylor SM; Loew ER; Grace MS
    Vis Neurosci; 2015 Jan; 32():E005. PubMed ID: 26241034
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Tubular eyes of deep-sea fishes: a comparative study of retinal topography.
    Collin SP; Hoskins RV; Partridge JC
    Brain Behav Evol; 1997; 50(6):335-57. PubMed ID: 9406644
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A new computational model illuminates the extraordinary eyes of Phronima.
    Bagheri ZM; Jessop AL; Partridge JC; Osborn KJ; Hemmi JM
    PLoS Comput Biol; 2022 Oct; 18(10):e1010545. PubMed ID: 36251706
    [TBL] [Abstract][Full Text] [Related]  

  • 31. New perspectives on eye development and the evolution of eyes and photoreceptors.
    Gehring WJ
    J Hered; 2005; 96(3):171-84. PubMed ID: 15653558
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A new phylogenetic test for comparing multiple high-dimensional evolutionary rates suggests interplay of evolutionary rates and modularity in lanternfishes (Myctophiformes; Myctophidae).
    Denton JS; Adams DC
    Evolution; 2015 Sep; 69(9):2425-40. PubMed ID: 26278586
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evidence that eye-facing photophores serve as a reference for counterillumination in an order of deep-sea fishes.
    Davis AL; Sutton TT; Kier WM; Johnsen S
    Proc Biol Sci; 2020 Jun; 287(1928):20192918. PubMed ID: 32517614
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Spectral sensitivity in ray-finned fishes: diversity, ecology and shared descent.
    Schweikert LE; Fitak RR; Caves EM; Sutton TT; Johnsen S
    J Exp Biol; 2018 Nov; 221(Pt 23):. PubMed ID: 30322978
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Reflecting optics in the diverticular eye of a deep-sea barreleye fish (Rhynchohyalus natalensis).
    Partridge JC; Douglas RH; Marshall NJ; Chung WS; Jordan TM; Wagner HJ
    Proc Biol Sci; 2014 May; 281(1782):20133223. PubMed ID: 24648222
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Pushing the limits of photoreception in twilight conditions: The rod-like cone retina of the deep-sea pearlsides.
    de Busserolles F; Cortesi F; Helvik JV; Davies WIL; Templin RM; Sullivan RKP; Michell CT; Mountford JK; Collin SP; Irigoien X; Kaartvedt S; Marshall J
    Sci Adv; 2017 Nov; 3(11):eaao4709. PubMed ID: 29134201
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The visual ecology of a deep-sea fish, the escolar Lepidocybium flavobrunneum (Smith, 1843).
    Landgren E; Fritsches K; Brill R; Warrant E
    Philos Trans R Soc Lond B Biol Sci; 2014; 369(1636):20130039. PubMed ID: 24395966
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Do American goldfinches see their world like passive prey foragers? A study on visual fields, retinal topography, and sensitivity of photoreceptors.
    Baumhardt PE; Moore BA; Doppler M; Fernández-Juricic E
    Brain Behav Evol; 2014; 83(3):181-98. PubMed ID: 24663005
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Grouped retinae and tapetal cups in some Teleostian fish: occurrence, structure, and function.
    Francke M; Kreysing M; Mack A; Engelmann J; Karl A; Makarov F; Guck J; Kolle M; Wolburg H; Pusch R; von der Emde G; Schuster S; Wagner HJ; Reichenbach A
    Prog Retin Eye Res; 2014 Jan; 38():43-69. PubMed ID: 24157316
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Scene through the eyes of an apex predator: a comparative analysis of the shark visual system.
    Collin SP
    Clin Exp Optom; 2018 Sep; 101(5):624-640. PubMed ID: 30066959
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.