These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 24927130)

  • 1. Daily changes in temperature, not the circadian clock, regulate growth rate in Brachypodium distachyon.
    Matos DA; Cole BJ; Whitney IP; MacKinnon KJ; Kay SA; Hazen SP
    PLoS One; 2014; 9(6):e100072. PubMed ID: 24927130
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Changes in ambient temperature are the prevailing cue in determining Brachypodium distachyon diurnal gene regulation.
    MacKinnon KJ; Cole BJ; Yu C; Coomey JH; Hartwick NT; Remigereau MS; Duffy T; Michael TP; Kay SA; Hazen SP
    New Phytol; 2020 Sep; 227(6):1709-1724. PubMed ID: 32112414
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Limited water stress modulates expression of circadian clock genes in Brachypodium distachyon roots.
    Gombos M; Hapek N; Kozma-Bognár L; Grezal G; Zombori Z; Kiss E; Györgyey J
    Sci Rep; 2023 Jan; 13(1):1241. PubMed ID: 36690685
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Physiological significance of the plant circadian clock in natural field conditions.
    Izawa T
    Plant Cell Environ; 2012 Oct; 35(10):1729-41. PubMed ID: 22681566
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Circadian clock and PIF4-mediated external coincidence mechanism coordinately integrates both of the cues from seasonal changes in photoperiod and temperature to regulate plant growth in Arabidopsis thaliana.
    Nomoto Y; Kubozono S; Miyachi M; Yamashino T; Nakamichi N; Mizuno T
    Plant Signal Behav; 2013 Feb; 8(2):e22863. PubMed ID: 23154509
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aberrant temporal growth pattern and morphology of root and shoot caused by a defective circadian clock in Arabidopsis thaliana.
    Ruts T; Matsubara S; Wiese-Klinkenberg A; Walter A
    Plant J; 2012 Oct; 72(1):154-61. PubMed ID: 22694320
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PHYTOCHROME C is an essential light receptor for photoperiodic flowering in the temperate grass, Brachypodium distachyon.
    Woods DP; Ream TS; Minevich G; Hobert O; Amasino RM
    Genetics; 2014 Sep; 198(1):397-408. PubMed ID: 25023399
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Circadian clock-regulated physiological outputs: dynamic responses in nature.
    Kinmonth-Schultz HA; Golembeski GS; Imaizumi T
    Semin Cell Dev Biol; 2013 May; 24(5):407-13. PubMed ID: 23435352
    [TBL] [Abstract][Full Text] [Related]  

  • 9. From a repressilator-based circadian clock mechanism to an external coincidence model responsible for photoperiod and temperature control of plant architecture in Arabodopsis thaliana.
    Yamashino T
    Biosci Biotechnol Biochem; 2013; 77(1):10-6. PubMed ID: 23291766
    [TBL] [Abstract][Full Text] [Related]  

  • 10.
    Bouché F; Woods DP; Linden J; Li W; Mayer KS; Amasino RM; Périlleux C
    Front Plant Sci; 2021; 12():769194. PubMed ID: 35069625
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The circadian clock controls temporal and spatial patterns of floral development in sunflower.
    Marshall CM; Thompson VL; Creux NM; Harmer SL
    Elife; 2023 Jan; 12():. PubMed ID: 36637156
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Light- and clock-control of genes involved in detoxification.
    Carmona-Antoñanzas G; Santi M; Migaud H; Vera LM
    Chronobiol Int; 2017; 34(8):1026-1041. PubMed ID: 28617195
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of light and food on the circadian clock in liver of rainbow trout, Oncorhynchus mykiss.
    Hernández-Pérez J; Míguez JM; Naderi F; Soengas JL; López-Patiño MA
    Chronobiol Int; 2017; 34(9):1259-1272. PubMed ID: 28933632
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Light triggers a network switch between circadian morning and evening oscillators controlling behaviour during daily temperature cycles.
    Lorber C; Leleux S; Stanewsky R; Lamaze A
    PLoS Genet; 2022 Nov; 18(11):e1010487. PubMed ID: 36367867
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Growing at the right time: interconnecting the TOR pathway with photoperiod and circadian regulation.
    Urrea-Castellanos R; Caldana C; Henriques R
    J Exp Bot; 2022 Nov; 73(20):7006-7015. PubMed ID: 35738873
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Developmental effects of constant light on circadian behaviour and gene expressions in zebra finches: Insights into mechanisms of metabolic adaptation to aperiodic environment in diurnal animals.
    Prabhat A; Malik I; Jha NA; Bhardwaj SK; Kumar V
    J Photochem Photobiol B; 2020 Oct; 211():111995. PubMed ID: 32836050
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Downstream of the plant circadian clock: output pathways for the control of physiology and development.
    Adams S; Carré IA
    Essays Biochem; 2011 Jun; 49(1):53-69. PubMed ID: 21819384
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The regulation of plant growth by the circadian clock.
    Farré EM
    Plant Biol (Stuttg); 2012 May; 14(3):401-10. PubMed ID: 22284304
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photoperiod sensitivity of the Arabidopsis circadian clock is tissue-specific.
    Shimizu H; Araki T; Endo M
    Plant Signal Behav; 2015; 10(6):e1010933. PubMed ID: 26176897
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of temperature on circadian clock and chronotype: an experimental study on a passerine bird.
    Lehmann M; Spoelstra K; Visser ME; Helm B
    Chronobiol Int; 2012 Oct; 29(8):1062-71. PubMed ID: 22881370
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.