These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 24927586)

  • 1. Correlating the motion of electrons and nuclei with two-dimensional electronic-vibrational spectroscopy.
    Oliver TA; Lewis NH; Fleming GR
    Proc Natl Acad Sci U S A; 2014 Jul; 111(28):10061-6. PubMed ID: 24927586
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Probing and Exploiting the Interplay between Nuclear and Electronic Motion in Charge Transfer Processes.
    Delor M; Sazanovich IV; Towrie M; Weinstein JA
    Acc Chem Res; 2015 Apr; 48(4):1131-9. PubMed ID: 25789559
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of Two-Dimensional Electronic-Vibrational Sum Frequency Generation (2D-EVSFG) for Vibronic and Solvent Couplings of Molecules at Interfaces and Surfaces.
    Huang-Fu ZC; Qian Y; Deng GH; Zhang T; Schmidt S; Brown J; Rao Y
    ACS Phys Chem Au; 2023 Jul; 3(4):374-385. PubMed ID: 37520317
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two-dimensional electronic-vibrational spectroscopy: Exploring the interplay of electrons and nuclei in excited state molecular dynamics.
    Arsenault EA; Bhattacharyya P; Yoneda Y; Fleming GR
    J Chem Phys; 2021 Jul; 155(2):020901. PubMed ID: 34266264
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrafast X-ray Transient Absorption Spectroscopy of Gas-Phase Photochemical Reactions: A New Universal Probe of Photoinduced Molecular Dynamics.
    Bhattacherjee A; Leone SR
    Acc Chem Res; 2018 Dec; 51(12):3203-3211. PubMed ID: 30462481
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two-dimensional electronic-vibrational sum frequency spectroscopy for interactions of electronic and nuclear motions at interfaces.
    Deng GH; Qian Y; Zhang T; Han J; Chen H; Rao Y
    Proc Natl Acad Sci U S A; 2021 Aug; 118(34):. PubMed ID: 34417312
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Following Coupled Electronic-Nuclear Motion through Conical Intersections in the Ultrafast Relaxation of β-Apo-8'-carotenal.
    Oliver TA; Fleming GR
    J Phys Chem B; 2015 Aug; 119(34):11428-41. PubMed ID: 26132534
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Signatures of vibronic coupling in two-dimensional electronic-vibrational and vibrational-electronic spectroscopies.
    Gaynor JD; Khalil M
    J Chem Phys; 2017 Sep; 147(9):094202. PubMed ID: 28886647
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two-dimensional electronic-vibrational spectroscopic study of conical intersection dynamics: an experimental and electronic structure study.
    Wu EC; Ge Q; Arsenault EA; Lewis NHC; Gruenke NL; Head-Gordon MJ; Fleming GR
    Phys Chem Chem Phys; 2019 Jul; 21(26):14153-14163. PubMed ID: 30311930
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two-dimensional electronic-vibrational spectra: modeling correlated electronic and nuclear motion.
    Terenziani F; Painelli A
    Phys Chem Chem Phys; 2015 May; 17(19):13074-81. PubMed ID: 25912698
    [TBL] [Abstract][Full Text] [Related]  

  • 11. From Coherence to Function: Exploring the Connection in Chemical Systems.
    Rather SR; Scholes GD; Chen LX
    Acc Chem Res; 2024 Sep; 57(18):2620-2630. PubMed ID: 39222721
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigation of the excited state structure of DCM via ultrafast electronic pump/vibrational probe.
    Van Tassle AJ; Prantil MA; Fleming GR
    J Phys Chem B; 2006 Sep; 110(38):18989-95. PubMed ID: 16986894
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two-dimensional vibrational-electronic spectroscopy.
    Courtney TL; Fox ZW; Slenkamp KM; Khalil M
    J Chem Phys; 2015 Oct; 143(15):154201. PubMed ID: 26493900
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrafast radiationless transition pathways through conical intersections in photo-excited 9H-adenine.
    Hassan WM; Chung WC; Shimakura N; Koseki S; Kono H; Fujimura Y
    Phys Chem Chem Phys; 2010; 12(20):5317-28. PubMed ID: 20358092
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Orientational Coupling of Molecules at Interfaces Revealed by Two-Dimensional Electronic-Vibrational Sum Frequency Generation (2D-EVSFG).
    Huang-Fu ZC; Qian Y; Zhang T; Deng GH; Brown JB; Fisher H; Schmidt S; Chen H; Rao Y
    JACS Au; 2023 May; 3(5):1413-1423. PubMed ID: 37234121
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Water dynamics in salt solutions studied with ultrafast two-dimensional infrared (2D IR) vibrational echo spectroscopy.
    Fayer MD; Moilanen DE; Wong D; Rosenfeld DE; Fenn EE; Park S
    Acc Chem Res; 2009 Sep; 42(9):1210-9. PubMed ID: 19378969
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vibronic coherence evolution in multidimensional ultrafast photochemical processes.
    Gaynor JD; Sandwisch J; Khalil M
    Nat Commun; 2019 Dec; 10(1):5621. PubMed ID: 31819052
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Femtosecond Stimulated Raman Exposes the Role of Vibrational Coherence in Condensed-Phase Photoreactivity.
    Hoffman DP; Mathies RA
    Acc Chem Res; 2016 Apr; 49(4):616-25. PubMed ID: 27003235
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Monitoring Non-Adiabatic Dynamics of the RNA Base Uracil by UV-Pump-IR-Probe Spectroscopy.
    Fingerhut BP; Dorfman KE; Mukamel S
    J Phys Chem Lett; 2013 Jun; 4(11):1933-1942. PubMed ID: 23914288
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mapping Vibronic Couplings in a Solar Cell Dye with Polarization-Selective Two-Dimensional Electronic-Vibrational Spectroscopy.
    Gaynor JD; Petrone A; Li X; Khalil M
    J Phys Chem Lett; 2018 Nov; 9(21):6289-6295. PubMed ID: 30339410
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.