These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 24927600)

  • 1. Compositional landscape for glass formation in metal alloys.
    Na JH; Demetriou MD; Floyd M; Hoff A; Garrett GR; Johnson WL
    Proc Natl Acad Sci U S A; 2014 Jun; 111(25):9031-6. PubMed ID: 24927600
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Beating Homogeneous Nucleation and Tuning Atomic Ordering in Glass-Forming Metals by Nanocalorimetry.
    Zhao B; Yang B; Abyzov AS; Schmelzer JWP; Rodríguez-Viejo J; Zhai Q; Schick C; Gao Y
    Nano Lett; 2017 Dec; 17(12):7751-7760. PubMed ID: 29111758
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicted Optimum Composition for the Glass-Forming Ability of Bulk Amorphous Alloys: Application to Cu-Zr-Al.
    An Q; Samwer K; Goddard WA; Johnson WL; Jaramillo-Botero A; Garret G; Demetriou MD
    J Phys Chem Lett; 2012 Nov; 3(21):3143-8. PubMed ID: 26296020
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Physical origin of glass formation from multicomponent systems.
    Hu YC; Tanaka H
    Sci Adv; 2020 Dec; 6(50):. PubMed ID: 33310854
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Long-Term Physical (In)Stability of Spray-Dried Amorphous Drugs: Relationship with Glass-Forming Ability and Physicochemical Properties.
    Edueng K; Bergström CAS; Gråsjö J; Mahlin D
    Pharmaceutics; 2019 Aug; 11(9):. PubMed ID: 31438566
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of preparation pathway on the glass forming ability.
    Blaabjerg LI; Lindenberg E; Rades T; Grohganz H; Löbmann K
    Int J Pharm; 2017 Apr; 521(1-2):232-238. PubMed ID: 28232267
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Correlation between the Arrhenius crossover and the glass forming ability in metallic glasses.
    Wen T; Yao W; Wang N
    Sci Rep; 2017 Oct; 7(1):13164. PubMed ID: 29030595
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Atomic-scale mechanisms of the glass-forming ability in metallic glasses.
    Yang L; Guo GQ; Chen LY; Huang CL; Ge T; Chen D; Liaw PK; Saksl K; Ren Y; Zeng QS; LaQua B; Chen FG; Jiang JZ
    Phys Rev Lett; 2012 Sep; 109(10):105502. PubMed ID: 23005298
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigating the atomic level influencing factors of glass forming ability in NiAl and CuZr metallic glasses.
    Sedighi S; Kirk DW; Singh CV; Thorpe SJ
    J Chem Phys; 2015 Sep; 143(11):114509. PubMed ID: 26395721
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anomalously slow crystal growth of the glass-forming alloy CuZr.
    Tang C; Harrowell P
    Nat Mater; 2013 Jun; 12(6):507-11. PubMed ID: 23624630
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Compositional dependence of the fragility in metallic glass forming liquids.
    Kube SA; Sohn S; Ojeda-Mota R; Evers T; Polsky W; Liu N; Ryan K; Rinehart S; Sun Y; Schroers J
    Nat Commun; 2022 Jun; 13(1):3708. PubMed ID: 35764635
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impurity-driven nanocrystallization of Zr-based bulk amorphous alloys.
    Akdeniz MV; Mekhrabov AO
    J Nanosci Nanotechnol; 2008 Feb; 8(2):894-900. PubMed ID: 18464424
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the glass forming ability of liquid alloys.
    Waseda Y; Chen HS; Thomas Jacob K; Shibata H
    Sci Technol Adv Mater; 2008 Apr; 9(2):023003. PubMed ID: 27877951
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Is there a correlation between the glass forming ability of a drug and its supersaturation propensity?
    Blaabjerg LI; Lindenberg E; Löbmann K; Grohganz H; Rades T
    Int J Pharm; 2018 Mar; 538(1-2):243-249. PubMed ID: 29341914
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular dynamics simulation of minor Zr addition on short and medium-range orders of Cu-Zr metallic glass.
    Cao X; Sun M
    J Mol Model; 2022 Sep; 28(10):324. PubMed ID: 36129553
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancement of the fracture strength and glass-forming ability of CoFeTaB bulk glassy alloy.
    Shen B; Inoue A
    J Phys Condens Matter; 2005 Sep; 17(37):5647-5653. PubMed ID: 32397038
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predictive modeling of Time-Temperature-Transformation diagram of metallic glasses based on atomistically-informed classical nucleation theory.
    Sato Y; Nakai C; Wakeda M; Ogata S
    Sci Rep; 2017 Aug; 7(1):7194. PubMed ID: 28775268
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Beyond packing of hard spheres: The effects of core softness, non-additivity, intermediate-range repulsion, and many-body interactions on the glass-forming ability of bulk metallic glasses.
    Zhang K; Fan M; Liu Y; Schroers J; Shattuck MD; O'Hern CS
    J Chem Phys; 2015 Nov; 143(18):184502. PubMed ID: 26567672
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Machine-learning improves understanding of glass formation in metallic systems.
    Forrest RM; Greer AL
    Digit Discov; 2022 Aug; 1(4):476-489. PubMed ID: 36091413
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A classification system to assess the crystallization tendency of organic molecules from undercooled melts.
    Baird JA; Van Eerdenbrugh B; Taylor LS
    J Pharm Sci; 2010 Sep; 99(9):3787-806. PubMed ID: 20623696
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.