These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 24927720)

  • 1. Connectivity-based parcellation of the human frontal polar cortex.
    Moayedi M; Salomons TV; Dunlop KA; Downar J; Davis KD
    Brain Struct Funct; 2015 Sep; 220(5):2603-16. PubMed ID: 24927720
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Connectivity-based parcellation of the human frontal pole with diffusion tensor imaging.
    Liu H; Qin W; Li W; Fan L; Wang J; Jiang T; Yu C
    J Neurosci; 2013 Apr; 33(16):6782-90. PubMed ID: 23595737
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Co-activation based parcellation of the human frontal pole.
    Ray KL; Zald DH; Bludau S; Riedel MC; Bzdok D; Yanes J; Falcone KE; Amunts K; Fox PT; Eickhoff SB; Laird AR
    Neuroimage; 2015 Dec; 123():200-11. PubMed ID: 26254112
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Abnormal Functional Connectivity of Frontopolar Subregions in Treatment-Nonresponsive Major Depressive Disorder.
    Fettes PW; Moayedi M; Dunlop K; Mansouri F; Vila-Rodriguez F; Giacobbe P; Davis KD; Lam RW; Kennedy SH; Daskalakis ZJ; Blumberger DM; Downar J
    Biol Psychiatry Cogn Neurosci Neuroimaging; 2018 Apr; 3(4):337-347. PubMed ID: 29628066
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Connectivity-based parcellation of the human temporal pole using diffusion tensor imaging.
    Fan L; Wang J; Zhang Y; Han W; Yu C; Jiang T
    Cereb Cortex; 2014 Dec; 24(12):3365-78. PubMed ID: 23926116
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Connectivity-based subdivisions of the human right "temporoparietal junction area": evidence for different areas participating in different cortical networks.
    Mars RB; Sallet J; Schüffelgen U; Jbabdi S; Toni I; Rushworth MF
    Cereb Cortex; 2012 Aug; 22(8):1894-903. PubMed ID: 21955921
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Connectivity-based parcellation of the human posteromedial cortex.
    Zhang Y; Fan L; Zhang Y; Wang J; Zhu M; Zhang Y; Yu C; Jiang T
    Cereb Cortex; 2014 Mar; 24(3):719-27. PubMed ID: 23146967
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modulating intrinsic connectivity: adjacent subregions within supplementary motor cortex, dorsolateral prefrontal cortex, and parietal cortex connect to separate functional networks during task and also connect during rest.
    Roth JK; Johnson MK; Tokoglu F; Murphy I; Constable RT
    PLoS One; 2014; 9(3):e90672. PubMed ID: 24637793
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional and anatomical connectivity-based parcellation of human cingulate cortex.
    Jin F; Zheng P; Liu H; Guo H; Sun Z
    Brain Behav; 2018 Aug; 8(8):e01070. PubMed ID: 30039643
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Connectivity Profiles Reveal a Transition Subarea in the Parahippocampal Region That Integrates the Anterior Temporal-Posterior Medial Systems.
    Zhuo J; Fan L; Liu Y; Zhang Y; Yu C; Jiang T
    J Neurosci; 2016 Mar; 36(9):2782-95. PubMed ID: 26937015
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Large-Scale Meta-Analysis of Human Medial Frontal Cortex Reveals Tripartite Functional Organization.
    de la Vega A; Chang LJ; Banich MT; Wager TD; Yarkoni T
    J Neurosci; 2016 Jun; 36(24):6553-62. PubMed ID: 27307242
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determination of the posterior boundary of Wernicke's area based on multimodal connectivity profiles.
    Wang J; Fan L; Wang Y; Xu W; Jiang T; Fox PT; Eickhoff SB; Yu C; Jiang T
    Hum Brain Mapp; 2015 May; 36(5):1908-24. PubMed ID: 25619891
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Organization of the Human Frontal Pole Revealed by Large-Scale DTI-Based Connectivity: Implications for Control of Behavior.
    Orr JM; Smolker HR; Banich MT
    PLoS One; 2015; 10(5):e0124797. PubMed ID: 25945925
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional connectivity-based parcellation of amygdala using self-organized mapping: a data driven approach.
    Mishra A; Rogers BP; Chen LM; Gore JC
    Hum Brain Mapp; 2014 Apr; 35(4):1247-60. PubMed ID: 23418140
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Subregions of DLPFC Display Graded yet Distinct Structural and Functional Connectivity.
    Jung J; Lambon Ralph MA; Jackson RL
    J Neurosci; 2022 Apr; 42(15):3241-3252. PubMed ID: 35232759
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Defining functional SMA and pre-SMA subregions in human MFC using resting state fMRI: functional connectivity-based parcellation method.
    Kim JH; Lee JM; Jo HJ; Kim SH; Lee JH; Kim ST; Seo SW; Cox RW; Na DL; Kim SI; Saad ZS
    Neuroimage; 2010 Feb; 49(3):2375-86. PubMed ID: 19837176
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional organization of the human posterior cingulate cortex, revealed by multiple connectivity-based parcellation methods.
    Cha J; Jo HJ; Gibson WS; Lee JM
    Hum Brain Mapp; 2017 Jun; 38(6):2808-2818. PubMed ID: 28294456
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Altered brain connectivity in sagittal craniosynostosis.
    Beckett JS; Brooks ED; Lacadie C; Vander Wyk B; Jou RJ; Steinbacher DM; Constable RT; Pelphrey KA; Persing JA
    J Neurosurg Pediatr; 2014 Jun; 13(6):690-8. PubMed ID: 24745341
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unravelling the intrinsic functional organization of the human lateral frontal cortex: a parcellation scheme based on resting state fMRI.
    Goulas A; Uylings HB; Stiers P
    J Neurosci; 2012 Jul; 32(30):10238-52. PubMed ID: 22836258
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional Segregation of the Human Dorsomedial Prefrontal Cortex.
    Eickhoff SB; Laird AR; Fox PT; Bzdok D; Hensel L
    Cereb Cortex; 2016 Jan; 26(1):304-21. PubMed ID: 25331597
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.