BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

262 related articles for article (PubMed ID: 24927821)

  • 1. Marker-assisted introgression of a QTL region to improve rust resistance in three elite and popular varieties of peanut (Arachis hypogaea L.).
    Varshney RK; Pandey MK; Janila P; Nigam SN; Sudini H; Gowda MV; Sriswathi M; Radhakrishnan T; Manohar SS; Nagesh P
    Theor Appl Genet; 2014 Aug; 127(8):1771-81. PubMed ID: 24927821
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A QTL study on late leaf spot and rust revealed one major QTL for molecular breeding for rust resistance in groundnut (Arachis hypogaea L.).
    Khedikar YP; Gowda MV; Sarvamangala C; Patgar KV; Upadhyaya HD; Varshney RK
    Theor Appl Genet; 2010 Sep; 121(5):971-84. PubMed ID: 20526757
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Marker assisted backcross to introgress late leaf spot and rust resistance in groundnut (Arachis hypogaea L.).
    Rajarathinam P; Palanisamy G; P R; Narayana M; Alagirisamy M
    Mol Biol Rep; 2023 Mar; 50(3):2411-2419. PubMed ID: 36586081
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mapping of a dominant rust resistance gene revealed two R genes around the major Rust_QTL in cultivated peanut (Arachis hypogaea L.).
    Mondal S; Badigannavar AM
    Theor Appl Genet; 2018 Aug; 131(8):1671-1681. PubMed ID: 29744525
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetic mapping and QTL analysis for peanut smut resistance.
    de Blas FJ; Bruno CI; Arias RS; Ballén-Taborda C; Mamani E; Oddino C; Rosso M; Costero BP; Bressano M; Soave JH; Soave SJ; Buteler MI; Seijo JG; Massa AN
    BMC Plant Biol; 2021 Jul; 21(1):312. PubMed ID: 34215182
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Introgression of peanut smut resistance from landraces to elite peanut cultivars (Arachis hypogaea L.).
    Bressano M; Massa AN; Arias RS; de Blas F; Oddino C; Faustinelli PC; Soave S; Soave JH; Pérez MA; Sobolev VS; Lamb MC; Balzarini M; Buteler MI; Seijo JG
    PLoS One; 2019; 14(2):e0211920. PubMed ID: 30735547
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Validation and identification of promising gene specific markers governing foliar disease resistance in groundnut (Arachis hypogaea L.).
    Killada GK; Akkareddy S; Muga SD; Pinagari A; Gundrathi SV; Gangireddy AK; Vulusala BP; Chaduvula ESP
    Mol Biol Rep; 2024 Jun; 51(1):708. PubMed ID: 38824228
    [TBL] [Abstract][Full Text] [Related]  

  • 8. QTL-seq approach identified genomic regions and diagnostic markers for rust and late leaf spot resistance in groundnut (Arachis hypogaea L.).
    Pandey MK; Khan AW; Singh VK; Vishwakarma MK; Shasidhar Y; Kumar V; Garg V; Bhat RS; Chitikineni A; Janila P; Guo B; Varshney RK
    Plant Biotechnol J; 2017 Aug; 15(8):927-941. PubMed ID: 28028892
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Discovery of two novel and adjacent QTLs on chromosome B02 controlling resistance against bacterial wilt in peanut variety Zhonghua 6.
    Luo H; Pandey MK; Zhi Y; Zhang H; Xu S; Guo J; Wu B; Chen H; Ren X; Zhou X; Chen Y; Chen W; Huang L; Liu N; Sudini HK; Varshney RK; Lei Y; Liao B; Jiang H
    Theor Appl Genet; 2020 Apr; 133(4):1133-1148. PubMed ID: 31980836
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combining ability and gene action controlling rust resistance in groundnut (Arachis hypogaea L.).
    Daudi H; Shimelis H; Mathew I; Rathore A; Ojiewo CO
    Sci Rep; 2021 Aug; 11(1):16513. PubMed ID: 34389777
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative trait locus analysis and construction of consensus genetic map for foliar disease resistance based on two recombinant inbred line populations in cultivated groundnut (Arachis hypogaea L.).
    Sujay V; Gowda MV; Pandey MK; Bhat RS; Khedikar YP; Nadaf HL; Gautami B; Sarvamangala C; Lingaraju S; Radhakrishan T; Knapp SJ; Varshney RK
    Mol Breed; 2012 Aug; 30(2):773-788. PubMed ID: 22924018
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification and validation of a major quantitative trait locus for slow-rusting resistance to stripe rust in wheat.
    Cao X; Zhou J; Gong X; Zhao G; Jia J; Qi X
    J Integr Plant Biol; 2012 May; 54(5):330-44. PubMed ID: 22349012
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Consensus map integration and QTL meta-analysis narrowed a locus for yield traits to 0.7 cM and refined a region for late leaf spot resistance traits to 0.38 cM on linkage group A05 in peanut (Arachis hypogaea L.).
    Lu Q; Liu H; Hong Y; Li H; Liu H; Li X; Wen S; Zhou G; Li S; Chen X; Liang X
    BMC Genomics; 2018 Dec; 19(1):887. PubMed ID: 30526476
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of QTLs for Rust Resistance in the Peanut Wild Species Arachis magna and the Development of KASP Markers for Marker-Assisted Selection.
    Leal-Bertioli SC; Cavalcante U; Gouvea EG; Ballén-Taborda C; Shirasawa K; Guimarães PM; Jackson SA; Bertioli DJ; Moretzsohn MC
    G3 (Bethesda); 2015 May; 5(7):1403-13. PubMed ID: 25943521
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selecting a set of wild barley introgression lines and verification of QTL effects for resistance to powdery mildew and leaf rust.
    Schmalenbach I; Körber N; Pillen K
    Theor Appl Genet; 2008 Nov; 117(7):1093-106. PubMed ID: 18663425
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular mapping and improvement of leaf rust resistance in wheat breeding lines.
    Tsilo TJ; Kolmer JA; Anderson JA
    Phytopathology; 2014 Aug; 104(8):865-70. PubMed ID: 24521485
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A recombination bin-map identified a major QTL for resistance to Tomato Spotted Wilt Virus in peanut (Arachis hypogaea).
    Agarwal G; Clevenger J; Kale SM; Wang H; Pandey MK; Choudhary D; Yuan M; Wang X; Culbreath AK; Holbrook CC; Liu X; Varshney RK; Guo B
    Sci Rep; 2019 Dec; 9(1):18246. PubMed ID: 31796847
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genome-wide DArT and SNP scan for QTL associated with resistance to stripe rust (Puccinia striiformis f. sp. tritici) in elite ICARDA wheat (Triticum aestivum L.) germplasm.
    Jighly A; Oyiga BC; Makdis F; Nazari K; Youssef O; Tadesse W; Abdalla O; Ogbonnaya FC
    Theor Appl Genet; 2015 Jul; 128(7):1277-95. PubMed ID: 25851000
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetic Mapping of Resistance to Meloidogyne arenaria in Arachis stenosperma: A New Source of Nematode Resistance for Peanut.
    Leal-Bertioli SC; Moretzsohn MC; Roberts PA; Ballén-Taborda C; Borba TC; Valdisser PA; Vianello RP; Araújo AC; Guimarães PM; Bertioli DJ
    G3 (Bethesda); 2015 Dec; 6(2):377-90. PubMed ID: 26656152
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification, introgression, and molecular marker genetic analysis and selection of a highly effective novel oat crown rust resistance from diploid oat, Avena strigosa.
    Rines HW; Miller ME; Carson M; Chao S; Tiede T; Wiersma J; Kianian SF
    Theor Appl Genet; 2018 Mar; 131(3):721-733. PubMed ID: 29222636
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.