BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 24927837)

  • 1. A tutorial to identify nonlinear associations in gene expression time series data.
    Fujita A; Miyano S
    Methods Mol Biol; 2014; 1164():87-95. PubMed ID: 24927837
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling nonlinear gene regulatory networks from time series gene expression data.
    Fujita A; Sato JR; Garay-Malpartida HM; Sogayar MC; Ferreira CE; Miyano S
    J Bioinform Comput Biol; 2008 Oct; 6(5):961-79. PubMed ID: 18942161
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A new multiple regression approach for the construction of genetic regulatory networks.
    Zhang SQ; Ching WK; Tsing NK; Leung HY; Guo D
    Artif Intell Med; 2010; 48(2-3):153-60. PubMed ID: 19963359
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Time-varying modeling of gene expression regulatory networks using the wavelet dynamic vector autoregressive method.
    Fujita A; Sato JR; Garay-Malpartida HM; Morettin PA; Sogayar MC; Ferreira CE
    Bioinformatics; 2007 Jul; 23(13):1623-30. PubMed ID: 17463021
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling the temporal evolution of the Drosophila gene expression from DNA microarray time series.
    Haye A; Dehouck Y; Kwasigroch JM; Bogaerts P; Rooman M
    Phys Biol; 2009 Jan; 6(1):016004. PubMed ID: 19171963
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gene expression complex networks: synthesis, identification, and analysis.
    Lopes FM; Cesar RM; Costa Lda F
    J Comput Biol; 2011 Oct; 18(10):1353-67. PubMed ID: 21548810
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A network inference workflow applied to virulence-related processes in Salmonella typhimurium.
    Taylor RC; Singhal M; Weller J; Khoshnevis S; Shi L; McDermott J
    Ann N Y Acad Sci; 2009 Mar; 1158():143-58. PubMed ID: 19348639
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An extended Kalman filtering approach to modeling nonlinear dynamic gene regulatory networks via short gene expression time series.
    Wang Z; Liu X; Liu Y; Liang J; Vinciotti V
    IEEE/ACM Trans Comput Biol Bioinform; 2009; 6(3):410-9. PubMed ID: 19644169
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reconstruction of transcriptional network from microarray data using combined mutual information and network-assisted regression.
    Wang XD; Qi YX; Jiang ZL
    IET Syst Biol; 2011 Mar; 5(2):95-102. PubMed ID: 21405197
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Boolean modeling of biological regulatory networks: a methodology tutorial.
    Saadatpour A; Albert R
    Methods; 2013 Jul; 62(1):3-12. PubMed ID: 23142247
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using gene expression programming to infer gene regulatory networks from time-series data.
    Zhang Y; Pu Y; Zhang H; Su Y; Zhang L; Zhou J
    Comput Biol Chem; 2013 Dec; 47():198-206. PubMed ID: 24140883
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prediction of pairwise gene interaction using threshold logic.
    Gowda T; Vrudhula S; Kim S
    Ann N Y Acad Sci; 2009 Mar; 1158():276-86. PubMed ID: 19348649
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genetic network identification using convex programming.
    Julius A; Zavlanos M; Boyd S; Pappas GJ
    IET Syst Biol; 2009 May; 3(3):155-66. PubMed ID: 19449976
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gene regulatory network clustering for graph layout based on microarray gene expression data.
    Kojima K; Imoto S; Nagasaki M; Miyano S
    Genome Inform; 2010; 24():84-95. PubMed ID: 22081591
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling of gene regulatory network dynamics using threshold logic.
    Gowda T; Vrudhula S; Kim S
    Ann N Y Acad Sci; 2009 Mar; 1158():71-81. PubMed ID: 19348633
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inference of gene regulatory networks incorporating multi-source biological knowledge via a state space model with L1 regularization.
    Hasegawa T; Yamaguchi R; Nagasaki M; Miyano S; Imoto S
    PLoS One; 2014; 9(8):e105942. PubMed ID: 25162401
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An empirical Bayesian method for estimating biological networks from temporal microarray data.
    Rau A; Jaffrézic F; Foulley JL; Doerge RW
    Stat Appl Genet Mol Biol; 2010; 9():Article 9. PubMed ID: 20196759
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gene coexpression as Hebbian learning in prokaryotic genomes.
    Vey G
    Bull Math Biol; 2013 Dec; 75(12):2431-49. PubMed ID: 24078338
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inferring contagion in regulatory networks.
    Fujita A; Sato JR; Angelo M; Demasi A; Yamaguchi R; Shimamura T; Ferreira CE; Sogayar MC; Miyano S
    IEEE/ACM Trans Comput Biol Bioinform; 2011; 8(2):570-76. PubMed ID: 20479499
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Disturbance analysis of nonlinear differential equation models of genetic SUM regulatory networks.
    Li P; Lam J
    IEEE/ACM Trans Comput Biol Bioinform; 2011; 8(1):253-9. PubMed ID: 21071813
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.