BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

63 related articles for article (PubMed ID: 24927877)

  • 1. Assembling more O₂ uptake responses: is it possible to merely stack the repeated transitions?
    Francescato MP; Cettolo V; Bellio R
    Respir Physiol Neurobiol; 2014 Aug; 200():46-9. PubMed ID: 24927877
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Confidence intervals for the parameters estimated from simulated O2 uptake kinetics: effects of different data treatments.
    Francescato MP; Cettolo V; Bellio R
    Exp Physiol; 2014 Jan; 99(1):187-95. PubMed ID: 24121286
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of the fitting window on the O
    Francescato MP; Cettolo V
    J Appl Physiol (1985); 2021 Sep; 131(3):1009-1019. PubMed ID: 34292790
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-intensity interval training speeds the adjustment of pulmonary O2 uptake, but not muscle deoxygenation, during moderate-intensity exercise transitions initiated from low and elevated baseline metabolic rates.
    Williams AM; Paterson DH; Kowalchuk JM
    J Appl Physiol (1985); 2013 Jun; 114(11):1550-62. PubMed ID: 23519229
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Data collection, handling, and fitting strategies to optimize accuracy and precision of oxygen uptake kinetics estimation from breath-by-breath measurements.
    Benson AP; Bowen TS; Ferguson C; Murgatroyd SR; Rossiter HB
    J Appl Physiol (1985); 2017 Jul; 123(1):227-242. PubMed ID: 28450551
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pulmonary O2 uptake on-kinetics in rowing and cycle ergometer exercise.
    Roberts CL; Wilkerson DP; Jones AM
    Respir Physiol Neurobiol; 2005 Apr; 146(2-3):247-58. PubMed ID: 15766913
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Priming exercise speeds pulmonary O2 uptake kinetics during supine "work-to-work" high-intensity cycle exercise.
    DiMenna FJ; Wilkerson DP; Burnley M; Bailey SJ; Jones AM
    J Appl Physiol (1985); 2010 Feb; 108(2):283-92. PubMed ID: 19959765
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relationship between pulmonary O2 uptake kinetics and muscle deoxygenation during moderate-intensity exercise.
    DeLorey DS; Kowalchuk JM; Paterson DH
    J Appl Physiol (1985); 2003 Jul; 95(1):113-20. PubMed ID: 12679363
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of short-term high-intensity interval training vs. continuous training on O2 uptake kinetics, muscle deoxygenation, and exercise performance.
    McKay BR; Paterson DH; Kowalchuk JM
    J Appl Physiol (1985); 2009 Jul; 107(1):128-38. PubMed ID: 19443744
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The algorithm used for the calculation of gas exchange affects the estimation of O
    Francescato MP; Cettolo V
    Exp Physiol; 2024 Mar; 109(3):393-404. PubMed ID: 37983192
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the modeling of breath-by-breath oxygen uptake kinetics at the onset of high-intensity exercises: simulated annealing vs. GRG2 method.
    Bernard O; Alata O; Francaux M
    J Appl Physiol (1985); 2006 Mar; 100(3):1049-58. PubMed ID: 16254071
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exercise on-transient gas exchange kinetics are slowed as a function of age.
    Babcock MA; Paterson DH; Cunningham DA; Dickinson JR
    Med Sci Sports Exerc; 1994 Apr; 26(4):440-6. PubMed ID: 8201899
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of interbreath fluctuations on characterizing exercise gas exchange kinetics.
    Lamarra N; Whipp BJ; Ward SA; Wasserman K
    J Appl Physiol (1985); 1987 May; 62(5):2003-12. PubMed ID: 3110126
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dissociation between the time courses of femoral artery blood flow and pulmonary VO2 during repeated bouts of heavy knee extension exercise in humans.
    Fukuba Y; Ohe Y; Miura A; Kitano A; Endo M; Sato H; Miyachi M; Koga S; Fukuda O
    Exp Physiol; 2004 May; 89(3):243-53. PubMed ID: 15123559
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of age on O(2) uptake kinetics and the adaptation of muscle deoxygenation at the onset of moderate-intensity cycling exercise.
    DeLorey DS; Kowalchuk JM; Paterson DH
    J Appl Physiol (1985); 2004 Jul; 97(1):165-72. PubMed ID: 15003999
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adaptation of pulmonary O2 uptake kinetics and muscle deoxygenation at the onset of heavy-intensity exercise in young and older adults.
    DeLorey DS; Kowalchuk JM; Paterson DH
    J Appl Physiol (1985); 2005 May; 98(5):1697-704. PubMed ID: 15640394
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The impact of uncertainties in the CT conversion algorithm when predicting proton beam ranges in patients from dose and PET-activity distributions.
    España S; Paganetti H
    Phys Med Biol; 2010 Dec; 55(24):7557-71. PubMed ID: 21098912
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact of venous return on pulmonary oxygen uptake kinetics during dynamic exercise: in silico time series analyses from muscles to lungs.
    Drescher U
    J Appl Physiol (1985); 2018 Oct; 125(4):1150-1164. PubMed ID: 30048201
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Human femoral artery and estimated muscle capillary blood flow kinetics following the onset of exercise.
    Harper AJ; Ferreira LF; Lutjemeier BJ; Townsend DK; Barstow TJ
    Exp Physiol; 2006 Jul; 91(4):661-71. PubMed ID: 16556660
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estimation of respiratory gas exchange: a comparative study of linear and nonlinear model-based estimation techniques.
    Brandes A; Bruni C; Granato L
    IEEE Trans Biomed Eng; 2006 Jul; 53(7):1241-9. PubMed ID: 16830928
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.