BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 24928200)

  • 1. Combining De Ley-Doudoroff and methylerythritol phosphate pathways for enhanced isoprene biosynthesis from D-galactose.
    Ramos KR; Valdehuesa KN; Liu H; Nisola GM; Lee WK; Chung WJ
    Bioprocess Biosyst Eng; 2014 Dec; 37(12):2505-13. PubMed ID: 24928200
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combination of Entner-Doudoroff pathway with MEP increases isoprene production in engineered Escherichia coli.
    Liu H; Sun Y; Ramos KR; Nisola GM; Valdehuesa KN; Lee WK; Park SJ; Chung WJ
    PLoS One; 2013; 8(12):e83290. PubMed ID: 24376679
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modification of targets related to the Entner-Doudoroff/pentose phosphate pathway route for methyl-D-erythritol 4-phosphate-dependent carotenoid biosynthesis in Escherichia coli.
    Li C; Ying LQ; Zhang SS; Chen N; Liu WF; Tao Y
    Microb Cell Fact; 2015 Aug; 14():117. PubMed ID: 26264597
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biosynthesis of isoprene in Escherichia coli via methylerythritol phosphate (MEP) pathway.
    Zhao Y; Yang J; Qin B; Li Y; Sun Y; Su S; Xian M
    Appl Microbiol Biotechnol; 2011 Jun; 90(6):1915-22. PubMed ID: 21468716
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synergy between methylerythritol phosphate pathway and mevalonate pathway for isoprene production in Escherichia coli.
    Yang C; Gao X; Jiang Y; Sun B; Gao F; Yang S
    Metab Eng; 2016 Sep; 37():79-91. PubMed ID: 27174717
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigation of the methylerythritol 4-phosphate pathway for microbial terpenoid production through metabolic control analysis.
    Volke DC; Rohwer J; Fischer R; Jennewein S
    Microb Cell Fact; 2019 Nov; 18(1):192. PubMed ID: 31690314
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of 1-deoxy-D-xylulose 5-phosphate synthase activity in Grey poplar leaves using isotope ratio mass spectrometry.
    Ghirardo A; Zimmer I; Brüggemann N; Schnitzler JP
    Phytochemistry; 2010 Jun; 71(8-9):918-22. PubMed ID: 20303132
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolic profiling of the methylerythritol phosphate pathway reveals the source of post-illumination isoprene burst from leaves.
    Li Z; Sharkey TD
    Plant Cell Environ; 2013 Feb; 36(2):429-37. PubMed ID: 22831282
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolic engineering of Escherichia coli for biosynthesis of D-galactonate.
    Liu H; Ramos KR; Valdehuesa KN; Nisola GM; Malihan LB; Lee WK; Park SJ; Chung WJ
    Bioprocess Biosyst Eng; 2014 Mar; 37(3):383-91. PubMed ID: 23820824
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolic flux analysis of plastidic isoprenoid biosynthesis in poplar leaves emitting and nonemitting isoprene.
    Ghirardo A; Wright LP; Bi Z; Rosenkranz M; Pulido P; Rodríguez-Concepción M; Niinemets Ü; Brüggemann N; Gershenzon J; Schnitzler JP
    Plant Physiol; 2014 May; 165(1):37-51. PubMed ID: 24590857
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isoprenoid biosynthesis via 1-deoxy-D-xylulose 5-phosphate/2-C-methyl-D-erythritol 4-phosphate (DOXP/MEP) pathway.
    Wanke M; Skorupinska-Tudek K; Swiezewska E
    Acta Biochim Pol; 2001; 48(3):663-72. PubMed ID: 11833775
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Feedback inhibition of deoxy-D-xylulose-5-phosphate synthase regulates the methylerythritol 4-phosphate pathway.
    Banerjee A; Wu Y; Banerjee R; Li Y; Yan H; Sharkey TD
    J Biol Chem; 2013 Jun; 288(23):16926-16936. PubMed ID: 23612965
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evidence of isoprenoid precursor toxicity in Bacillus subtilis.
    Sivy TL; Fall R; Rosenstiel TN
    Biosci Biotechnol Biochem; 2011; 75(12):2376-83. PubMed ID: 22146731
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Isoprene biosynthesis in Bacillus subtilis via the methylerythritol phosphate pathway.
    Wagner WP; Helmig D; Fall R
    J Nat Prod; 2000 Jan; 63(1):37-40. PubMed ID: 10650075
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heterologous expression of the mevalonic acid pathway in cyanobacteria enhances endogenous carbon partitioning to isoprene.
    Bentley FK; Zurbriggen A; Melis A
    Mol Plant; 2014 Jan; 7(1):71-86. PubMed ID: 24157609
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A specific process to purify 2-methyl-D-erythritol-4-phosphate enzymatically converted from D-glyceraldehyde-3-phosphate and pyruvate.
    Yang SQ; Deng J; Wu QQ; Li H; Gao WY
    Nat Prod Commun; 2015 Feb; 10(2):339-40. PubMed ID: 25920278
    [TBL] [Abstract][Full Text] [Related]  

  • 17. From molecular fossils of bacterial hopanoids to the formation of isoprene units: discovery and elucidation of the methylerythritol phosphate pathway.
    Rohmer M
    Lipids; 2008 Dec; 43(12):1095-107. PubMed ID: 19011917
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional analysis of genes involved in the biosynthesis of isoprene in Bacillus subtilis.
    Julsing MK; Rijpkema M; Woerdenbag HJ; Quax WJ; Kayser O
    Appl Microbiol Biotechnol; 2007 Jul; 75(6):1377-84. PubMed ID: 17458547
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evolution of the isoprene biosynthetic pathway in kudzu.
    Sharkey TD; Yeh S; Wiberley AE; Falbel TG; Gong D; Fernandez DE
    Plant Physiol; 2005 Feb; 137(2):700-12. PubMed ID: 15653811
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineering Pseudomonas putida for isoprenoid production by manipulating endogenous and shunt pathways supplying precursors.
    Hernandez-Arranz S; Perez-Gil J; Marshall-Sabey D; Rodriguez-Concepcion M
    Microb Cell Fact; 2019 Sep; 18(1):152. PubMed ID: 31500633
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.