BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 24928382)

  • 1. Enhancing soluble phosphorus removal within buffer strips using industrial by-products.
    Habibiandehkordi R; Quinton JN; Surridge BW
    Environ Sci Pollut Res Int; 2014 Nov; 21(21):12257-69. PubMed ID: 24928382
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Long-term effects of drinking-water treatment residuals on dissolved phosphorus export from vegetated buffer strips.
    Habibiandehkordi R; Quinton JN; Surridge BW
    Environ Sci Pollut Res Int; 2015 Apr; 22(8):6068-76. PubMed ID: 25388559
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Alternative amendment for soluble phosphorus removal from poultry litter.
    Makris KC; Sarkar D; Salazar J; Punamiya P; Datta R
    Environ Sci Pollut Res Int; 2010 Jan; 17(1):195-202. PubMed ID: 19340471
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of aluminium-based water treatment residual for potential phosphorus removal in engineered wetlands.
    Babatunde AO; Zhao YQ; Burke AM; Morris MA; Hanrahan JP
    Environ Pollut; 2009 Oct; 157(10):2830-6. PubMed ID: 19427085
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Managing biosolids runoff phosphorus using buffer strips enhanced with drinking water treatment residuals.
    Wagner DJ; Elliott HA; Brandt RC; Jaiswal D
    J Environ Qual; 2008; 37(4):1567-74. PubMed ID: 18574189
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Water treatment residual (WTR)-coated wood mulch for alleviation of toxic metals and phosphorus from polluted urban stormwater runoff.
    Soleimanifar H; Deng Y; Wu L; Sarkar D
    Chemosphere; 2016 Jul; 154():289-292. PubMed ID: 27060636
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Innovative approach for recycling phosphorous from agro-wastewaters using water treatment residuals (WTR).
    Zohar I; Ippolito JA; Massey MS; Litaor IM
    Chemosphere; 2017 Feb; 168():234-243. PubMed ID: 27788362
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A method for determining the phosphorus sorption capacity and amorphous aluminum of aluminum-based drinking water treatment residuals.
    Dayton EA; Basta NT
    J Environ Qual; 2005; 34(3):1112-8. PubMed ID: 15888897
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phosphorus Sorption Characteristics in Aluminum-based Water Treatment Residuals Reacted with Dairy Wastewater: 1. Isotherms, XRD, and SEM-EDS Analysis.
    Zohar I; Massey MS; Ippolito JA; Litaor MI
    J Environ Qual; 2018 May; 47(3):538-545. PubMed ID: 29864177
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Use of drinking water treatment residuals as a potential best management practice to reduce phosphorus risk index scores.
    Dayton EA; Basta NT
    J Environ Qual; 2005; 34(6):2112-7. PubMed ID: 16275711
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Use of Fe/Al drinking water treatment residuals as amendments for enhancing the retention capacity of glyphosate in agricultural soils.
    Zhao Y; Wendling LA; Wang C; Pei Y
    J Environ Sci (China); 2015 Aug; 34():133-42. PubMed ID: 26257356
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of solution chemistry on arsenic sorption by Fe- and Al-based drinking-water treatment residuals.
    Nagar R; Sarkar D; Makris KC; Datta R
    Chemosphere; 2010 Feb; 78(8):1028-35. PubMed ID: 20071004
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physicochemical properties related to long-term phosphorus retention by drinking-water treatment residuals.
    Makris KC; Harris WG; O'Connor GA; Obreza TA; Elliott HA
    Environ Sci Technol; 2005 Jun; 39(11):4280-9. PubMed ID: 15984811
    [TBL] [Abstract][Full Text] [Related]  

  • 14. X-ray absorption spectroscopy as a tool investigating arsenic(III) and arsenic(V) sorption by an aluminum-based drinking-water treatment residual.
    Makris KC; Sarkar D; Parsons JG; Datta R; Gardea-Torresdey JL
    J Hazard Mater; 2009 Nov; 171(1-3):980-6. PubMed ID: 19631458
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aging effects on reactivity of an aluminum-based drinking-water treatment residual as a soil amendment.
    Agyin-Birikorang S; O'Connor GA
    Sci Total Environ; 2009 Jan; 407(2):826-34. PubMed ID: 18976798
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An alum-based water treatment residual can reduce extractable phosphorus concentrations in three phosphorus-enriched coastal plain soils.
    Novak JM; Watts DW
    J Environ Qual; 2005; 34(5):1820-7. PubMed ID: 16151234
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Leachability and leaching patterns from aluminium-based water treatment residual used as media in laboratory-scale engineered wetlands.
    Babatunde AO; Zhao YQ
    Environ Sci Pollut Res Int; 2010 Aug; 17(7):1314-22. PubMed ID: 20232166
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Drinking water treatment residuals: a review of recent uses.
    Ippolito JA; Barbarick KA; Elliott HA
    J Environ Qual; 2011; 40(1):1-12. PubMed ID: 21488487
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aluminum water treatment residuals as permeable reactive barrier sorbents to reduce phosphorus losses.
    Miller ML; Bhadha JH; O'Connor GA; Jawitz JW; Mitchell J
    Chemosphere; 2011 May; 83(7):978-83. PubMed ID: 21377185
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aluminum drinking water treatment residuals (Al-WTRs) as sorbent for mercury: Implications for soil remediation.
    Hovsepyan A; Bonzongo JC
    J Hazard Mater; 2009 May; 164(1):73-80. PubMed ID: 18814960
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.