These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
227 related articles for article (PubMed ID: 24928425)
1. Differences in the tissue tropism to chicken oviduct epithelial cells between avian coronavirus IBV strains QX and B1648 are not related to the sialic acid binding properties of their spike proteins. Mork AK; Hesse M; Abd El Rahman S; Rautenschlein S; Herrler G; Winter C Vet Res; 2014 Jun; 45(1):67. PubMed ID: 24928425 [TBL] [Abstract][Full Text] [Related]
2. Three Amino Acid Changes in Avian Coronavirus Spike Protein Allow Binding to Kidney Tissue. Bouwman KM; Parsons LM; Berends AJ; de Vries RP; Cipollo JF; Verheije MH J Virol; 2020 Jan; 94(2):. PubMed ID: 31694947 [TBL] [Abstract][Full Text] [Related]
3. Genetic Characterization of the Belgian Nephropathogenic Infectious Bronchitis Virus (NIBV) Reference Strain B1648. Reddy VR; Theuns S; Roukaerts ID; Zeller M; Matthijnssens J; Nauwynck HJ Viruses; 2015 Aug; 7(8):4488-506. PubMed ID: 26262637 [TBL] [Abstract][Full Text] [Related]
4. Binding of avian coronavirus spike proteins to host factors reflects virus tropism and pathogenicity. Wickramasinghe IN; de Vries RP; Gröne A; de Haan CA; Verheije MH J Virol; 2011 Sep; 85(17):8903-12. PubMed ID: 21697468 [TBL] [Abstract][Full Text] [Related]
5. Intestinal Tropism of an Infectious Bronchitis Virus Isolate Not Explained by Spike Protein Binding Specificity. Saiada F; Gallardo RA; Shivaprasad HL; Corsiglia C; Van Santen VL Avian Dis; 2020 Mar; 64(1):23-35. PubMed ID: 32267122 [TBL] [Abstract][Full Text] [Related]
6. Mapping of the receptor-binding domain and amino acids critical for attachment in the spike protein of avian coronavirus infectious bronchitis virus. Promkuntod N; van Eijndhoven RE; de Vrieze G; Gröne A; Verheije MH Virology; 2014 Jan; 448():26-32. PubMed ID: 24314633 [TBL] [Abstract][Full Text] [Related]
7. Identification and molecular characterization of a novel serotype infectious bronchitis virus (GI-28) in China. Chen Y; Jiang L; Zhao W; Liu L; Zhao Y; Shao Y; Li H; Han Z; Liu S Vet Microbiol; 2017 Jan; 198():108-115. PubMed ID: 28062000 [TBL] [Abstract][Full Text] [Related]
8. Identification and Comparison of the Sialic Acid-Binding Domain Characteristics of Avian Coronavirus Infectious Bronchitis Virus Spike Protein. You R; Liu K; Huang M; Tang L; Zhang X; Huang Y; Zhao J; Zhao Y; Ye L; Zhang G J Virol; 2023 May; 97(5):e0048923. PubMed ID: 37097156 [TBL] [Abstract][Full Text] [Related]
9. Genetic and biological characteristics of four novel recombinant avian infectious bronchitis viruses isolated in China. Xu L; Ren M; Sheng J; Ma T; Han Z; Zhao Y; Sun J; Liu S Virus Res; 2019 Apr; 263():87-97. PubMed ID: 30641197 [TBL] [Abstract][Full Text] [Related]
10. Analysis of the S1 gene of the avian infectious bronchitis virus (IBV) reveals changes in the IBV genetic groups circulating in southern Thailand. Promkuntod N; Thongmee S; Yoidam S Res Vet Sci; 2015 Jun; 100():299-302. PubMed ID: 25983048 [TBL] [Abstract][Full Text] [Related]
11. S1 gene sequence analysis of a nephropathogenic strain of avian infectious bronchitis virus in Egypt. Abdel-Moneim AS; El-Kady MF; Ladman BS; Gelb J Virol J; 2006 Sep; 3():78. PubMed ID: 16987422 [TBL] [Abstract][Full Text] [Related]
12. Pathogenicity comparison between QX-type and Mass-type infectious bronchitis virus to different segments of the oviducts in laying phase. Zhang X; Yan K; Zhang C; Guo M; Chen S; Liao K; Bo Z; Cao Y; Wu Y Virol J; 2022 Apr; 19(1):62. PubMed ID: 35392927 [TBL] [Abstract][Full Text] [Related]
13. Phylogeny and S1 Gene Variation of Infectious Bronchitis Virus Detected in Broilers and Layers in Turkey. Yilmaz H; Altan E; Cizmecigil UY; Gurel A; Ozturk GY; Bamac OE; Aydin O; Britton P; Monne I; Cetinkaya B; Morgan KL; Faburay B; Richt JA; Turan N Avian Dis; 2016 Sep; 60(3):596-602. PubMed ID: 27610718 [TBL] [Abstract][Full Text] [Related]
14. Pathogenicity of the Canadian Delmarva (DMV/1639) Infectious Bronchitis Virus (IBV) on Female Reproductive Tract of Chickens. Hassan MSH; Ali A; Buharideen SM; Goldsmith D; Coffin CS; Cork SC; van der Meer F; Boulianne M; Abdul-Careem MF Viruses; 2021 Dec; 13(12):. PubMed ID: 34960757 [TBL] [Abstract][Full Text] [Related]
15. Recombinant infectious bronchitis coronavirus H120 with the spike protein S1 gene of the nephropathogenic IBYZ strain remains attenuated but induces protective immunity. Jiang Y; Cheng X; Zhao X; Yu Y; Gao M; Zhou S Vaccine; 2020 Mar; 38(15):3157-3168. PubMed ID: 32057575 [TBL] [Abstract][Full Text] [Related]
16. Pathogenicity of a QX-like avian infectious bronchitis virus isolated in China. Ren G; Liu F; Huang M; Li L; Shang H; Liang M; Luo Q; Chen R Poult Sci; 2020 Jan; 99(1):111-118. PubMed ID: 32416792 [TBL] [Abstract][Full Text] [Related]
17. Infectious bronchitis virus in different avian physiological systems-a field study in Brazilian poultry flocks. Balestrin E; Fraga AP; Ikuta N; Canal CW; Fonseca AS; Lunge VR Poult Sci; 2014 Aug; 93(8):1922-9. PubMed ID: 24894532 [TBL] [Abstract][Full Text] [Related]
18. A novel highly virulent nephropathogenic QX-like infectious bronchitis virus originating from recombination of GI-13 and GI-19 genotype strains in China. Chen H; Shi W; Feng S; Yuan L; Jin M; Liang S; Wang X; Si H; Li G; Ou C Poult Sci; 2024 Aug; 103(8):103881. PubMed ID: 38865766 [TBL] [Abstract][Full Text] [Related]
19. Evaluation of a novel strain of infectious bronchitis virus emerged as a result of spike gene recombination between two highly diverged parent strains. Hewson KA; Noormohammadi AH; Devlin JM; Browning GF; Schultz BK; Ignjatovic J Avian Pathol; 2014; 43(3):249-57. PubMed ID: 24730363 [TBL] [Abstract][Full Text] [Related]
20. Contributions of the S2 spike ectodomain to attachment and host range of infectious bronchitis virus. Promkuntod N; Wickramasinghe IN; de Vrieze G; Gröne A; Verheije MH Virus Res; 2013 Nov; 177(2):127-37. PubMed ID: 24041648 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]