BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 24928437)

  • 21. Retention of NADPH-linked quinone reductase activity in an aldo-keto reductase following mutation of the catalytic tyrosine.
    Schlegel BP; Ratnam K; Penning TM
    Biochemistry; 1998 Aug; 37(31):11003-11. PubMed ID: 9692994
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mutational analysis of the AtNUDT7 Nudix hydrolase from Arabidopsis thaliana reveals residues required for protein quaternary structure formation and activity.
    Olejnik K; Płochocka D; Grynberg M; Goch G; Gruszecki WI; Basińska T; Kraszewska E
    Acta Biochim Pol; 2009; 56(2):291-300. PubMed ID: 19448856
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of multiple ligand binding on kinetic isotope effects in PQQ-dependent methanol dehydrogenase.
    Hothi P; Basran J; Sutcliffe MJ; Scrutton NS
    Biochemistry; 2003 Apr; 42(13):3966-78. PubMed ID: 12667088
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Quantum chemical modeling of methanol oxidation mechanisms by methanol dehydrogenase enzyme: effect of substitution of calcium by barium in the active site.
    Idupulapati NB; Mainardi DS
    J Phys Chem A; 2010 Feb; 114(4):1887-96. PubMed ID: 20055505
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The quinoprotein dehydrogenases for methanol and glucose.
    Anthony C
    Arch Biochem Biophys; 2004 Aug; 428(1):2-9. PubMed ID: 15234264
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Role of NAD binding and catalytic residues in the C-terminal binding protein corepressor.
    Mani-Telang P; Sutrias-Grau M; Williams G; Arnosti DN
    FEBS Lett; 2007 Nov; 581(27):5241-6. PubMed ID: 17964573
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Effect of intersubunit interaction in horse liver alcohol dehydrogenase on the kinetics of ethanol oxidation].
    Kershengol'ts BM; Rogozhin VV
    Biokhimiia; 1979 Apr; 44(4):661-71. PubMed ID: 35251
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Site-directed mutagenesis of histidine-90 in Escherichia coli L-threonine dehydrogenase alters its substrate specificity.
    Johnson AR; Dekker EE
    Arch Biochem Biophys; 1998 Mar; 351(1):8-16. PubMed ID: 9500838
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Plasmid-dependent methylotrophy in thermotolerant Bacillus methanolicus.
    Brautaset T; Jakobsen M ØM; Flickinger MC; Valla S; Ellingsen TE
    J Bacteriol; 2004 Mar; 186(5):1229-38. PubMed ID: 14973041
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Identification of a novel trifunctional homoisocitrate dehydrogenase and modulation of the broad substrate specificity through site-directed mutagenesis.
    Miyazaki K
    Biochem Biophys Res Commun; 2005 Oct; 336(2):596-602. PubMed ID: 16139794
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Purification and characterization of an activator protein for methanol dehydrogenase from thermotolerant Bacillus spp.
    Arfman N; Van Beeumen J; De Vries GE; Harder W; Dijkhuizen L
    J Biol Chem; 1991 Feb; 266(6):3955-60. PubMed ID: 1995643
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The catalytic triad in Drosophila alcohol dehydrogenase: pH, temperature and molecular modelling studies.
    Winberg JO; Brendskag MK; Sylte I; Lindstad RI; McKinley-McKee JS
    J Mol Biol; 1999 Nov; 294(2):601-16. PubMed ID: 10610783
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Environmental regulation of alcohol metabolism in thermotolerant methylotrophic Bacillus strains.
    Arfman N; de Vries KJ; Moezelaar HR; Attwood MM; Robinson GK; van Geel M; Dijkhuizen L
    Arch Microbiol; 1992; 157(3):272-8. PubMed ID: 1510560
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Biosensor-Based Directed Evolution of Methanol Dehydrogenase from
    Le TK; Ju SB; Lee HW; Lee JY; Oh SH; Kwon KK; Sung BH; Lee SG; Yeom SJ
    Int J Mol Sci; 2021 Feb; 22(3):. PubMed ID: 33540582
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Methanol production by reversed methylotrophy constructed in
    Takeya T; Yamakita M; Hayashi D; Fujisawa K; Sakai Y; Yurimoto H
    Biosci Biotechnol Biochem; 2020 May; 84(5):1062-1068. PubMed ID: 31942827
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Characterization of the substrate scope of an alcohol dehydrogenase commonly used as methanol dehydrogenase.
    Guo X; Feng Y; Wang X; Liu Y; Liu W; Li Q; Wang J; Xue S; Zhao ZK
    Bioorg Med Chem Lett; 2019 Jun; 29(12):1446-1449. PubMed ID: 31006524
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Proton transfer in benzyl alcohol dehydrogenase during catalysis: alternate proton-relay routes.
    Inoue J; Tomioka N; Itai A; Harayama S
    Biochemistry; 1998 Mar; 37(10):3305-11. PubMed ID: 9521650
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Diversity and Evolutionary Analysis of Iron-Containing (Type-III) Alcohol Dehydrogenases in Eukaryotes.
    Gaona-López C; Julián-Sánchez A; Riveros-Rosas H
    PLoS One; 2016; 11(11):e0166851. PubMed ID: 27893862
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cloning and characterization of the NADH pyrophosphatases from Caenorhabditis elegans and Saccharomyces cerevisiae, members of a Nudix hydrolase subfamily.
    Xu W; Dunn CA; Bessman MJ
    Biochem Biophys Res Commun; 2000 Jul; 273(2):753-8. PubMed ID: 10873676
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Secoisolariciresinol dehydrogenase: mode of catalysis and stereospecificity of hydride transfer in Podophyllum peltatum.
    Moinuddin SG; Youn B; Bedgar DL; Costa MA; Helms GL; Kang C; Davin LB; Lewis NG
    Org Biomol Chem; 2006 Mar; 4(5):808-16. PubMed ID: 16493463
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.