These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 24928444)

  • 21. Targeting DNA damage response kinases in cancer therapy.
    Gottifredi V
    Mutat Res; 2020; 821():111725. PubMed ID: 33157476
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The processing of double-stranded DNA breaks for recombinational repair by helicase-nuclease complexes.
    Yeeles JT; Dillingham MS
    DNA Repair (Amst); 2010 Mar; 9(3):276-85. PubMed ID: 20116346
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Loss of PPP2R2A inhibits homologous recombination DNA repair and predicts tumor sensitivity to PARP inhibition.
    Kalev P; Simicek M; Vazquez I; Munck S; Chen L; Soin T; Danda N; Chen W; Sablina A
    Cancer Res; 2012 Dec; 72(24):6414-24. PubMed ID: 23087057
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Misrepair of radiation-induced DNA double-strand breaks and its relevance for tumorigenesis and cancer treatment (review).
    Rothkamm K; Löbrich M
    Int J Oncol; 2002 Aug; 21(2):433-40. PubMed ID: 12118342
    [TBL] [Abstract][Full Text] [Related]  

  • 25. DNA double-strand breaks associated with replication forks are predominantly repaired by homologous recombination involving an exchange mechanism in mammalian cells.
    Arnaudeau C; Lundin C; Helleday T
    J Mol Biol; 2001 Apr; 307(5):1235-45. PubMed ID: 11292338
    [TBL] [Abstract][Full Text] [Related]  

  • 26. DNA repair helicases as targets for anti-cancer therapy.
    Gupta R; Brosh RM
    Curr Med Chem; 2007; 14(5):503-17. PubMed ID: 17346143
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A dual-nuclease mechanism for DNA break processing by AddAB-type helicase-nucleases.
    Yeeles JT; Dillingham MS
    J Mol Biol; 2007 Aug; 371(1):66-78. PubMed ID: 17570399
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Creating zinc finger nucleases to manipulate the genome in a site-specific manner using a modular-assembly approach.
    Porteus M
    Cold Spring Harb Protoc; 2010 Dec; 2010(12):pdb.top93. PubMed ID: 21123434
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Analysis of DNA double-strand break repair pathways in mice.
    Brugmans L; Kanaar R; Essers J
    Mutat Res; 2007 Jan; 614(1-2):95-108. PubMed ID: 16797606
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Tumor cell kill by c-MYC depletion: role of MYC-regulated genes that control DNA double-strand break repair.
    Luoto KR; Meng AX; Wasylishen AR; Zhao H; Coackley CL; Penn LZ; Bristow RG
    Cancer Res; 2010 Nov; 70(21):8748-59. PubMed ID: 20940401
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Regulation of DNA double-strand break repair pathway choice.
    Shrivastav M; De Haro LP; Nickoloff JA
    Cell Res; 2008 Jan; 18(1):134-47. PubMed ID: 18157161
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The Rb1 gene inhibits the viability of retinoblastoma cells by regulating homologous recombination.
    Yang Y; Tian S; Brown B; Chen P; Hu H; Xia L; Zhang J; Cai X; Chen Z; Pan X; Ge J; Yu K; Zhuang J
    Int J Mol Med; 2013 Jul; 32(1):137-43. PubMed ID: 23670186
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The SbcCD complex of Deinococcus radiodurans contributes to radioresistance and DNA strand break repair in vivo and exhibits Mre11-Rad50 type activity in vitro.
    Kamble VA; Misra HS
    DNA Repair (Amst); 2010 May; 9(5):488-94. PubMed ID: 20144564
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [The main repair pathways of double-strand breaks in the genomic DNA and interactions between them].
    Litvinov SV
    Tsitol Genet; 2014; 48(3):64-77. PubMed ID: 25019146
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The hybrid recombinational repair pathway operates in a χ activity deficient recC1004 mutant of Escherichia coli.
    Vlašić I; Simatović A; Brčić-Kostić K
    Biochimie; 2012 Sep; 94(9):1918-25. PubMed ID: 22617484
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cancer therapy. Targeting the poison within.
    Smits VA; Gillespie DA
    Cell Cycle; 2014; 13(15):2330-3. PubMed ID: 25483183
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The role and mechanism of long non-coding RNAs in homologous recombination repair of radiation-induced DNA damage.
    Yu N; Qin H; Zhang F; Liu T; Cao K; Yang Y; Chen Y; Cai J
    J Gene Med; 2023 Mar; 25(3):e3470. PubMed ID: 36537017
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Discovery of a novel DNA polymerase inhibitor and characterization of its antiproliferative properties.
    Mishra B; Zhang S; Zhao H; Darzynkiewicz Z; Lee EYC; Lee MYWT; Zhang Z
    Cancer Biol Ther; 2019; 20(4):474-486. PubMed ID: 30427259
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cancer-specific defects in DNA repair pathways as targets for personalized therapeutic approaches.
    Dietlein F; Thelen L; Reinhardt HC
    Trends Genet; 2014 Aug; 30(8):326-39. PubMed ID: 25017190
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Targeting DNA damage response and repair genes to enhance anticancer immunotherapy: rationale and clinical implication.
    Lamberti G; Andrini E; Sisi M; Federico AD; Ricciuti B
    Future Oncol; 2020 Aug; 16(23):1751-1766. PubMed ID: 32539551
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.