These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 24928495)

  • 61. Nanoscale examination of microdamage in sheep cortical bone using synchrotron radiation transmission x-ray microscopy.
    Brock GR; Kim G; Ingraffea AR; Andrews JC; Pianetta P; van der Meulen MC
    PLoS One; 2013; 8(3):e57942. PubMed ID: 23472121
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Tendon tissue microdamage and the limits of intrinsic repair.
    Stauber T; Blache U; Snedeker JG
    Matrix Biol; 2020 Jan; 85-86():68-79. PubMed ID: 31325483
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Alterations in damage processes in dense cancellous bone following gamma-radiation sterilization.
    Dux SJ; Ramsey D; Chu EH; Rimnac CM; Hernandez CJ
    J Biomech; 2010 May; 43(8):1509-13. PubMed ID: 20172526
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Cancellous bone microdamage in the proximal femur: influence of age and osteoarthritis on damage morphology and regional distribution.
    Fazzalari NL; Kuliwaba JS; Forwood MR
    Bone; 2002 Dec; 31(6):697-702. PubMed ID: 12531564
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Change of mechanical vertebrae properties due to progressive osteoporosis: combined biomechanical and finite-element analysis within a rat model.
    Müller R; Kampschulte M; Khassawna TE; Schlewitz G; Hürter B; Böcker W; Bobeth M; Langheinrich AC; Heiss C; Deutsch A; Cuniberti G
    Med Biol Eng Comput; 2014 Apr; 52(4):405-14. PubMed ID: 24518991
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Simulation of vertebral trabecular bone loss using voxel finite element analysis.
    Mc Donnell P; Harrison N; Liebschner MA; Mc Hugh PE
    J Biomech; 2009 Dec; 42(16):2789-96. PubMed ID: 19782987
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Postfailure modulus strongly affects microcracking and mechanical property change in human iliac cancellous bone: a study using a 2D nonlinear finite element method.
    Wang X; Zauel RR; Fyhrie DP
    J Biomech; 2008 Aug; 41(12):2654-8. PubMed ID: 18672244
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Three-dimensional microarchitecture of adolescent cancellous bone.
    Ding M; Danielsen CC; Hvid I; Overgaard S
    Bone; 2012 Nov; 51(5):953-60. PubMed ID: 22884723
    [TBL] [Abstract][Full Text] [Related]  

  • 69. The effect of standard and low-modulus cement augmentation on the stiffness, strength, and endplate pressure distribution in vertebroplasty.
    Kinzl M; Benneker LM; Boger A; Zysset PK; Pahr DH
    Eur Spine J; 2012 May; 21(5):920-9. PubMed ID: 22170449
    [TBL] [Abstract][Full Text] [Related]  

  • 70. High-resolution computed tomography for architectural characterization of human lumbar cancellous bone: relationships with histomorphometry and biomechanics.
    Cendre E; Mitton D; Roux JP; Arlot ME; Duboeuf F; Burt-Pichat B; Rumelhart C; Peix G; Meunier PJ
    Osteoporos Int; 1999; 10(5):353-60. PubMed ID: 10591832
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Sensitivity of multiple damage parameters to compressive overload in cortical bone.
    Morgan EF; Lee JJ; Keaveny TM
    J Biomech Eng; 2005 Aug; 127(4):557-62. PubMed ID: 16121524
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Links between mechanical behavior of cancellous bone and its microstructural properties under dynamic loading.
    Prot M; Saletti D; Pattofatto S; Bousson V; Laporte S
    J Biomech; 2015 Feb; 48(3):498-503. PubMed ID: 25577437
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Effects of minodronic acid and alendronate on bone remodeling, microdamage accumulation, degree of mineralization and bone mechanical properties in ovariectomized cynomolgus monkeys.
    Yamagami Y; Mashiba T; Iwata K; Tanaka M; Nozaki K; Yamamoto T
    Bone; 2013 May; 54(1):1-7. PubMed ID: 23356990
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Microdamage accumulation in bovine trabecular bone in uniaxial compression.
    Arthur Moore TL; Gibson LJ
    J Biomech Eng; 2002 Feb; 124(1):63-71. PubMed ID: 11873773
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Biomechanical consequences of an isolated overload on the human vertebral body.
    Kopperdahl DL; Pearlman JL; Keaveny TM
    J Orthop Res; 2000 Sep; 18(5):685-90. PubMed ID: 11117287
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Apparent Young's modulus of human radius using inverse finite-element method.
    Bosisio MR; Talmant M; Skalli W; Laugier P; Mitton D
    J Biomech; 2007; 40(9):2022-8. PubMed ID: 17097663
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Trabecular bone strength predictions using finite element analysis of micro-scale images at limited spatial resolution.
    Bevill G; Keaveny TM
    Bone; 2009 Apr; 44(4):579-84. PubMed ID: 19135184
    [TBL] [Abstract][Full Text] [Related]  

  • 78. An experimental study on the interface strength between titanium mesh cage and vertebra in reference to vertebral bone mineral density.
    Hasegawa K; Abe M; Washio T; Hara T
    Spine (Phila Pa 1976); 2001 Apr; 26(8):957-63. PubMed ID: 11317121
    [TBL] [Abstract][Full Text] [Related]  

  • 79. The dependence between the strength and stiffness of cancellous and cortical bone tissue for tension and compression: extension of a unifying principle.
    Yeni YN; Dong XN; Fyhrie DP; Les CM
    Biomed Mater Eng; 2004; 14(3):303-10. PubMed ID: 15299242
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Damage in trabecular bone at small strains.
    Morgan EF; Yeh OC; Keaveny TM
    Eur J Morphol; 2005; 42(1-2):13-21. PubMed ID: 16123020
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.