These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

394 related articles for article (PubMed ID: 24928774)

  • 21. Thermodynamics-based Metabolite Sensitivity Analysis in metabolic networks.
    Kiparissides A; Hatzimanikatis V
    Metab Eng; 2017 Jan; 39():117-127. PubMed ID: 27845184
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Development of a core
    Dash S; Khodayari A; Zhou J; Holwerda EK; Olson DG; Lynd LR; Maranas CD
    Biotechnol Biofuels; 2017; 10():108. PubMed ID: 28469704
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mechanistic analysis of multi-omics datasets to generate kinetic parameters for constraint-based metabolic models.
    Cotten C; Reed JL
    BMC Bioinformatics; 2013 Jan; 14():32. PubMed ID: 23360254
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A metabolite-centric view on flux distributions in genome-scale metabolic models.
    Riemer SA; Rex R; Schomburg D
    BMC Syst Biol; 2013 Apr; 7():33. PubMed ID: 23587327
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A hybrid model of anaerobic E. coli GJT001: combination of elementary flux modes and cybernetic variables.
    Kim JI; Varner JD; Ramkrishna D
    Biotechnol Prog; 2008; 24(5):993-1006. PubMed ID: 19194908
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Literature mining supports a next-generation modeling approach to predict cellular byproduct secretion.
    King ZA; O'Brien EJ; Feist AM; Palsson BO
    Metab Eng; 2017 Jan; 39():220-227. PubMed ID: 27986597
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Enhanced flux prediction by integrating relative expression and relative metabolite abundance into thermodynamically consistent metabolic models.
    Pandey V; Hadadi N; Hatzimanikatis V
    PLoS Comput Biol; 2019 May; 15(5):e1007036. PubMed ID: 31083653
    [TBL] [Abstract][Full Text] [Related]  

  • 28.
    Long CP; Au J; Gonzalez JE; Antoniewicz MR
    Metab Eng; 2016 Nov; 38():65-72. PubMed ID: 27343680
    [No Abstract]   [Full Text] [Related]  

  • 29. Prediction of metabolic fluxes by incorporating genomic context and flux-converging pattern analyses.
    Park JM; Kim TY; Lee SY
    Proc Natl Acad Sci U S A; 2010 Aug; 107(33):14931-6. PubMed ID: 20679215
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of lpdA gene knockout on the metabolism in Escherichia coli based on enzyme activities, intracellular metabolite concentrations and metabolic flux analysis by 13C-labeling experiments.
    Li M; Ho PY; Yao S; Shimizu K
    J Biotechnol; 2006 Mar; 122(2):254-66. PubMed ID: 16310273
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dynamic modeling of the central carbon metabolism of Escherichia coli.
    Chassagnole C; Noisommit-Rizzi N; Schmid JW; Mauch K; Reuss M
    Biotechnol Bioeng; 2002 Jul; 79(1):53-73. PubMed ID: 17590932
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Reducing the allowable kinetic space by constructing ensemble of dynamic models with the same steady-state flux.
    Tan Y; Rivera JG; Contador CA; Asenjo JA; Liao JC
    Metab Eng; 2011 Jan; 13(1):60-75. PubMed ID: 21075211
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Development of an accurate kinetic model for the central carbon metabolism of Escherichia coli.
    Jahan N; Maeda K; Matsuoka Y; Sugimoto Y; Kurata H
    Microb Cell Fact; 2016 Jun; 15(1):112. PubMed ID: 27329289
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Batch culture characterization and metabolic flux analysis of succinate-producing Escherichia coli strains.
    Sánchez AM; Bennett GN; San KY
    Metab Eng; 2006 May; 8(3):209-26. PubMed ID: 16434224
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Metabolic flux responses to deletion of 20 core enzymes reveal flexibility and limits of E. coli metabolism.
    Long CP; Antoniewicz MR
    Metab Eng; 2019 Sep; 55():249-257. PubMed ID: 31390539
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cyanobacterial carbon metabolism: Fluxome plasticity and oxygen dependence.
    Wan N; DeLorenzo DM; He L; You L; Immethun CM; Wang G; Baidoo EEK; Hollinshead W; Keasling JD; Moon TS; Tang YJ
    Biotechnol Bioeng; 2017 Jul; 114(7):1593-1602. PubMed ID: 28295163
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Integrated stoichiometric, thermodynamic and kinetic modelling of steady state metabolism.
    Fleming RM; Thiele I; Provan G; Nasheuer HP
    J Theor Biol; 2010 Jun; 264(3):683-92. PubMed ID: 20230840
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Optimal re-design of primary metabolism in Escherichia coli using linlog kinetics.
    Visser D; Schmid JW; Mauch K; Reuss M; Heijnen JJ
    Metab Eng; 2004 Oct; 6(4):378-90. PubMed ID: 15491866
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Modeling and simulation of the main metabolism in Escherichia coli and its several single-gene knockout mutants with experimental verification.
    Kadir TA; Mannan AA; Kierzek AM; McFadden J; Shimizu K
    Microb Cell Fact; 2010 Nov; 9():88. PubMed ID: 21092096
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Application of dynamic metabolic flux analysis for process modeling: Robust flux estimation with regularization, confidence bounds, and selection of elementary modes.
    Hebing L; Neymann T; Engell S
    Biotechnol Bioeng; 2020 Jul; 117(7):2058-2073. PubMed ID: 32196640
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.