BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

314 related articles for article (PubMed ID: 24928858)

  • 61. Whole-genome cartography of p53 response elements ranked on transactivation potential.
    Tebaldi T; Zaccara S; Alessandrini F; Bisio A; Ciribilli Y; Inga A
    BMC Genomics; 2015 Jun; 16(1):464. PubMed ID: 26081755
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Hyperoxia activates the ATR-Chk1 pathway and phosphorylates p53 at multiple sites.
    Das KC; Dashnamoorthy R
    Am J Physiol Lung Cell Mol Physiol; 2004 Jan; 286(1):L87-97. PubMed ID: 12959929
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Serine phosphorylation in the NH2 terminus of p53 facilitates transactivation.
    Mayr GA; Reed M; Wang P; Wang Y; Schweds JF; Tegtmeyer P
    Cancer Res; 1995 Jun; 55(11):2410-7. PubMed ID: 7757994
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Serine 15 phosphorylation of p53 directs its interaction with B56gamma and the tumor suppressor activity of B56gamma-specific protein phosphatase 2A.
    Shouse GP; Cai X; Liu X
    Mol Cell Biol; 2008 Jan; 28(1):448-56. PubMed ID: 17967874
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Interaction between transactivation domain of p53 and middle part of TBP-like protein (TLP) is involved in TLP-stimulated and p53-activated transcription from the p21 upstream promoter.
    Maeda R; Suzuki H; Tanaka Y; Tamura TA
    PLoS One; 2014; 9(3):e90190. PubMed ID: 24594805
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Cabin1 restrains p53 activity on chromatin.
    Jang H; Choi SY; Cho EJ; Youn HD
    Nat Struct Mol Biol; 2009 Sep; 16(9):910-5. PubMed ID: 19668210
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Phosphorylation of serine 392 in p53 is a common and integral event during p53 induction by diverse stimuli.
    Cox ML; Meek DW
    Cell Signal; 2010 Mar; 22(3):564-71. PubMed ID: 19932175
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Phosphorylation of p53: a novel pathway for p53 inactivation in human T-cell lymphotropic virus type 1-transformed cells.
    Pise-Masison CA; Radonovich M; Sakaguchi K; Appella E; Brady JN
    J Virol; 1998 Aug; 72(8):6348-55. PubMed ID: 9658074
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Serine starvation induces stress and p53-dependent metabolic remodelling in cancer cells.
    Maddocks OD; Berkers CR; Mason SM; Zheng L; Blyth K; Gottlieb E; Vousden KH
    Nature; 2013 Jan; 493(7433):542-6. PubMed ID: 23242140
    [TBL] [Abstract][Full Text] [Related]  

  • 70. p53 Phosphorylation at serine 15 is required for transcriptional induction of the plasminogen activator inhibitor-1 (PAI-1) gene by the alkylating agent N-methyl-N'-nitro-N-nitrosoguanidine.
    Parra M; Jardí M; Koziczak M; Nagamine Y; Muñoz-Cánoves P
    J Biol Chem; 2001 Sep; 276(39):36303-10. PubMed ID: 11470783
    [TBL] [Abstract][Full Text] [Related]  

  • 71. DNA damage-induced phosphorylation of p53 alleviates inhibition by MDM2.
    Shieh SY; Ikeda M; Taya Y; Prives C
    Cell; 1997 Oct; 91(3):325-34. PubMed ID: 9363941
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Targeting negative regulation of p53 by MDM2 and WIP1 as a therapeutic strategy in cutaneous melanoma.
    Wu CE; Esfandiari A; Ho YH; Wang N; Mahdi AK; Aptullahoglu E; Lovat P; Lunec J
    Br J Cancer; 2018 Feb; 118(4):495-508. PubMed ID: 29235570
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Aurora-A abrogation of p53 DNA binding and transactivation activity by phosphorylation of serine 215.
    Liu Q; Kaneko S; Yang L; Feldman RI; Nicosia SV; Chen J; Cheng JQ
    J Biol Chem; 2004 Dec; 279(50):52175-82. PubMed ID: 15469940
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Ser46 phosphorylation of p53 is not always sufficient to induce apoptosis: multiple mechanisms of regulation of p53-dependent apoptosis.
    Kurihara A; Nagoshi H; Yabuki M; Okuyama R; Obinata M; Ikawa S
    Genes Cells; 2007 Jul; 12(7):853-61. PubMed ID: 17584297
    [TBL] [Abstract][Full Text] [Related]  

  • 75. p53-dependent activation of microRNA-34a in response to etoposide-induced DNA damage in osteosarcoma cell lines not impaired by dominant negative p53 expression.
    Novello C; Pazzaglia L; Conti A; Quattrini I; Pollino S; Perego P; Picci P; Benassi MS
    PLoS One; 2014; 9(12):e114757. PubMed ID: 25490093
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Paradoxical suppression of cellular senescence by p53.
    Demidenko ZN; Korotchkina LG; Gudkov AV; Blagosklonny MV
    Proc Natl Acad Sci U S A; 2010 May; 107(21):9660-4. PubMed ID: 20457898
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Mutations in serines 15 and 20 of human p53 impair its apoptotic activity.
    Unger T; Sionov RV; Moallem E; Yee CL; Howley PM; Oren M; Haupt Y
    Oncogene; 1999 May; 18(21):3205-12. PubMed ID: 10359526
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Limited role of N-terminal phosphoserine residues in the activation of transcription by p53.
    Jackson MW; Agarwal MK; Agarwal ML; Agarwal A; Stanhope-Baker P; Williams BR; Stark GR
    Oncogene; 2004 May; 23(25):4477-87. PubMed ID: 15064747
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Protein kinase C delta regulates Ser46 phosphorylation of p53 tumor suppressor in the apoptotic response to DNA damage.
    Yoshida K; Liu H; Miki Y
    J Biol Chem; 2006 Mar; 281(9):5734-40. PubMed ID: 16377624
    [TBL] [Abstract][Full Text] [Related]  

  • 80. p53 tumor suppressor protein stability and transcriptional activity are targeted by Kaposi's sarcoma-associated herpesvirus-encoded viral interferon regulatory factor 3.
    Baresova P; Musilova J; Pitha PM; Lubyova B
    Mol Cell Biol; 2014 Feb; 34(3):386-99. PubMed ID: 24248600
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.