BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

314 related articles for article (PubMed ID: 24928858)

  • 81. MSK1 functions as a transcriptional coactivator of p53 in the regulation of p21 gene expression.
    Ahn J; Lee JG; Chin C; In S; Yang A; Park HS; Kim J; Park JH
    Exp Mol Med; 2018 Oct; 50(10):1-12. PubMed ID: 30305627
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Cdk2 kinase phosphorylates serine 315 of human p53 in vitro.
    Price BD; Hughes-Davies L; Park SJ
    Oncogene; 1995 Jul; 11(1):73-80. PubMed ID: 7624134
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Role of an ING1 growth regulator in transcriptional activation and targeted histone acetylation by the NuA4 complex.
    Nourani A; Doyon Y; Utley RT; Allard S; Lane WS; Côté J
    Mol Cell Biol; 2001 Nov; 21(22):7629-40. PubMed ID: 11604499
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Double-stranded-RNA-activated protein kinase PKR enhances transcriptional activation by tumor suppressor p53.
    Cuddihy AR; Li S; Tam NW; Wong AH; Taya Y; Abraham N; Bell JC; Koromilas AE
    Mol Cell Biol; 1999 Apr; 19(4):2475-84. PubMed ID: 10082513
    [TBL] [Abstract][Full Text] [Related]  

  • 85. SWI/SNF complex interacts with tumor suppressor p53 and is necessary for the activation of p53-mediated transcription.
    Lee D; Kim JW; Seo T; Hwang SG; Choi EJ; Choe J
    J Biol Chem; 2002 Jun; 277(25):22330-7. PubMed ID: 11950834
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Mouse double minute 2 associates with chromatin in the presence of p53 and is released to facilitate activation of transcription.
    White DE; Talbott KE; Arva NC; Bargonetti J
    Cancer Res; 2006 Apr; 66(7):3463-70. PubMed ID: 16585169
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Phosphorylation of p53 by TAF1 inactivates p53-dependent transcription in the DNA damage response.
    Wu Y; Lin JC; Piluso LG; Dhahbi JM; Bobadilla S; Spindler SR; Liu X
    Mol Cell; 2014 Jan; 53(1):63-74. PubMed ID: 24289924
    [TBL] [Abstract][Full Text] [Related]  

  • 88. p53 Binding to the p21 promoter is dependent on the nature of DNA damage.
    Hill R; Bodzak E; Blough MD; Lee PW
    Cell Cycle; 2008 Aug; 7(16):2535-43. PubMed ID: 18719376
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Phosphorylation of serine 18 regulates distinct p53 functions in mice.
    Sluss HK; Armata H; Gallant J; Jones SN
    Mol Cell Biol; 2004 Feb; 24(3):976-84. PubMed ID: 14729946
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Transcriptional regulation by p53 through intrinsic DNA/chromatin binding and site-directed cofactor recruitment.
    Espinosa JM; Emerson BM
    Mol Cell; 2001 Jul; 8(1):57-69. PubMed ID: 11511360
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Sp1 plays a critical role in the transcriptional activation of the human cyclin-dependent kinase inhibitor p21(WAF1/Cip1) gene by the p53 tumor suppressor protein.
    Koutsodontis G; Tentes I; Papakosta P; Moustakas A; Kardassis D
    J Biol Chem; 2001 Aug; 276(31):29116-25. PubMed ID: 11384995
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Diverse stresses dramatically alter genome-wide p53 binding and transactivation landscape in human cancer cells.
    Menendez D; Nguyen TA; Freudenberg JM; Mathew VJ; Anderson CW; Jothi R; Resnick MA
    Nucleic Acids Res; 2013 Aug; 41(15):7286-301. PubMed ID: 23775793
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Protein kinase CK2-dependent regulation of p53 function: evidence that the phosphorylation status of the serine 386 (CK2) site of p53 is constitutive and stable.
    McKendrick L; Milne D; Meek D
    Mol Cell Biochem; 1999 Jan; 191(1-2):187-99. PubMed ID: 10094408
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Regulation of p53 by hypoxia: dissociation of transcriptional repression and apoptosis from p53-dependent transactivation.
    Koumenis C; Alarcon R; Hammond E; Sutphin P; Hoffman W; Murphy M; Derr J; Taya Y; Lowe SW; Kastan M; Giaccia A
    Mol Cell Biol; 2001 Feb; 21(4):1297-310. PubMed ID: 11158315
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Addiction of lung cancer cells to GOF p53 is promoted by up-regulation of epidermal growth factor receptor through multiple contacts with p53 transactivation domain and promoter.
    Vaughan CA; Pearsall I; Singh S; Windle B; Deb SP; Grossman SR; Yeudall WA; Deb S
    Oncotarget; 2016 Mar; 7(11):12426-46. PubMed ID: 26820293
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Positive feedback regulation of p53 transactivity by DNA damage-induced ISG15 modification.
    Park JH; Yang SW; Park JM; Ka SH; Kim JH; Kong YY; Jeon YJ; Seol JH; Chung CH
    Nat Commun; 2016 Aug; 7():12513. PubMed ID: 27545325
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Regulation of the accumulation and function of p53 by phosphorylation of two residues within the domain that binds to Mdm2.
    Bean LJ; Stark GR
    J Biol Chem; 2002 Jan; 277(3):1864-71. PubMed ID: 11707453
    [TBL] [Abstract][Full Text] [Related]  

  • 98. SMAR1 forms a ternary complex with p53-MDM2 and negatively regulates p53-mediated transcription.
    Pavithra L; Mukherjee S; Sreenath K; Kar S; Sakaguchi K; Roy S; Chattopadhyay S
    J Mol Biol; 2009 May; 388(4):691-702. PubMed ID: 19303885
    [TBL] [Abstract][Full Text] [Related]  

  • 99. VprBP/DCAF1 regulates p53 function and stability through site-specific phosphorylation.
    Ghate NB; Kim S; Mehmood R; Shin Y; Kim K; An W
    Oncogene; 2023 Apr; 42(17):1405-1416. PubMed ID: 37041410
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Crotonylation at serine 46 impairs p53 activity.
    Liao P; Bhattarai N; Cao B; Zhou X; Jung JH; Damera K; Fuselier TT; Thareja S; Wimley WC; Wang B; Zeng SX; Lu H
    Biochem Biophys Res Commun; 2020 Apr; 524(3):730-735. PubMed ID: 32035620
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.