BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

524 related articles for article (PubMed ID: 24928860)

  • 1. Bone marrow stromal cell-derived exosomes as communicators in drug resistance in multiple myeloma cells.
    Wang J; Hendrix A; Hernot S; Lemaire M; De Bruyne E; Van Valckenborgh E; Lahoutte T; De Wever O; Vanderkerken K; Menu E
    Blood; 2014 Jul; 124(4):555-66. PubMed ID: 24928860
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proteasomal degradation of topoisomerase I is preceded by c-Jun NH2-terminal kinase activation, Fas up-regulation, and poly(ADP-ribose) polymerase cleavage in SN38-mediated cytotoxicity against multiple myeloma.
    Catley L; Tai YT; Shringarpure R; Burger R; Son MT; Podar K; Tassone P; Chauhan D; Hideshima T; Denis L; Richardson P; Munshi NC; Anderson KC
    Cancer Res; 2004 Dec; 64(23):8746-53. PubMed ID: 15574786
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Targeting mitochondria to overcome conventional and bortezomib/proteasome inhibitor PS-341 resistance in multiple myeloma (MM) cells.
    Chauhan D; Li G; Podar K; Hideshima T; Mitsiades C; Schlossman R; Munshi N; Richardson P; Cotter FE; Anderson KC
    Blood; 2004 Oct; 104(8):2458-66. PubMed ID: 15217830
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Knockdown of c-Met enhances sensitivity to bortezomib in human multiple myeloma U266 cells via inhibiting Akt/mTOR activity.
    Que W; Chen J; Chuang M; Jiang D
    APMIS; 2012 Mar; 120(3):195-203. PubMed ID: 22339676
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bortezomib-resistant nuclear factor-kappaB activity in multiple myeloma cells.
    Markovina S; Callander NS; O'Connor SL; Kim J; Werndli JE; Raschko M; Leith CP; Kahl BS; Kim K; Miyamoto S
    Mol Cancer Res; 2008 Aug; 6(8):1356-64. PubMed ID: 18708367
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bone marrow stromal-derived soluble factors and direct cell contact contribute to de novo drug resistance of myeloma cells by distinct mechanisms.
    Nefedova Y; Landowski TH; Dalton WS
    Leukemia; 2003 Jun; 17(6):1175-82. PubMed ID: 12764386
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Toll-like receptor (TLR)-1/2 triggering of multiple myeloma cells modulates their adhesion to bone marrow stromal cells and enhances bortezomib-induced apoptosis.
    Abdi J; Mutis T; Garssen J; Redegeld FA
    PLoS One; 2014; 9(5):e96608. PubMed ID: 24794258
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Galectin-9 exhibits anti-myeloma activity through JNK and p38 MAP kinase pathways.
    Kobayashi T; Kuroda J; Ashihara E; Oomizu S; Terui Y; Taniyama A; Adachi S; Takagi T; Yamamoto M; Sasaki N; Horiike S; Hatake K; Yamauchi A; Hirashima M; Taniwaki M
    Leukemia; 2010 Apr; 24(4):843-50. PubMed ID: 20200560
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The proteasome inhibitor PS-341 inhibits growth, induces apoptosis, and overcomes drug resistance in human multiple myeloma cells.
    Hideshima T; Richardson P; Chauhan D; Palombella VJ; Elliott PJ; Adams J; Anderson KC
    Cancer Res; 2001 Apr; 61(7):3071-6. PubMed ID: 11306489
    [TBL] [Abstract][Full Text] [Related]  

  • 10. BIRB 796 enhances cytotoxicity triggered by bortezomib, heat shock protein (Hsp) 90 inhibitor, and dexamethasone via inhibition of p38 mitogen-activated protein kinase/Hsp27 pathway in multiple myeloma cell lines and inhibits paracrine tumour growth.
    Yasui H; Hideshima T; Ikeda H; Jin J; Ocio EM; Kiziltepe T; Okawa Y; Vallet S; Podar K; Ishitsuka K; Richardson PG; Pargellis C; Moss N; Raje N; Anderson KC
    Br J Haematol; 2007 Feb; 136(3):414-23. PubMed ID: 17173546
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Endocytic pathway inhibition attenuates extracellular vesicle-induced reduction of chemosensitivity to bortezomib in multiple myeloma cells.
    Tu C; Du Z; Zhang H; Feng Y; Qi Y; Zheng Y; Liu J; Wang J
    Theranostics; 2021; 11(5):2364-2380. PubMed ID: 33500730
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bone marrow stromal cells from multiple myeloma patients uniquely induce bortezomib resistant NF-kappaB activity in myeloma cells.
    Markovina S; Callander NS; O'Connor SL; Xu G; Shi Y; Leith CP; Kim K; Trivedi P; Kim J; Hematti P; Miyamoto S
    Mol Cancer; 2010 Jul; 9():176. PubMed ID: 20604947
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tipifarnib and bortezomib are synergistic and overcome cell adhesion-mediated drug resistance in multiple myeloma and acute myeloid leukemia.
    Yanamandra N; Colaco NM; Parquet NA; Buzzeo RW; Boulware D; Wright G; Perez LE; Dalton WS; Beaupre DM
    Clin Cancer Res; 2006 Jan; 12(2):591-9. PubMed ID: 16428505
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular mechanisms mediating antimyeloma activity of proteasome inhibitor PS-341.
    Hideshima T; Mitsiades C; Akiyama M; Hayashi T; Chauhan D; Richardson P; Schlossman R; Podar K; Munshi NC; Mitsiades N; Anderson KC
    Blood; 2003 Feb; 101(4):1530-4. PubMed ID: 12393500
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel carbohydrate-based therapeutic GCS-100 overcomes bortezomib resistance and enhances dexamethasone-induced apoptosis in multiple myeloma cells.
    Chauhan D; Li G; Podar K; Hideshima T; Neri P; He D; Mitsiades N; Richardson P; Chang Y; Schindler J; Carver B; Anderson KC
    Cancer Res; 2005 Sep; 65(18):8350-8. PubMed ID: 16166312
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bone marrow stromal cells protect myeloma cells from bortezomib induced apoptosis by suppressing microRNA-15a expression.
    Hao M; Zhang L; An G; Meng H; Han Y; Xie Z; Xu Y; Li C; Yu Z; Chang H; Qiu L
    Leuk Lymphoma; 2011 Sep; 52(9):1787-94. PubMed ID: 21534877
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CXCR4 inhibitor AMD3100 disrupts the interaction of multiple myeloma cells with the bone marrow microenvironment and enhances their sensitivity to therapy.
    Azab AK; Runnels JM; Pitsillides C; Moreau AS; Azab F; Leleu X; Jia X; Wright R; Ospina B; Carlson AL; Alt C; Burwick N; Roccaro AM; Ngo HT; Farag M; Melhem MR; Sacco A; Munshi NC; Hideshima T; Rollins BJ; Anderson KC; Kung AL; Lin CP; Ghobrial IM
    Blood; 2009 Apr; 113(18):4341-51. PubMed ID: 19139079
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Targeting MEK induces myeloma-cell cytotoxicity and inhibits osteoclastogenesis.
    Tai YT; Fulciniti M; Hideshima T; Song W; Leiba M; Li XF; Rumizen M; Burger P; Morrison A; Podar K; Chauhan D; Tassone P; Richardson P; Munshi NC; Ghobrial IM; Anderson KC
    Blood; 2007 Sep; 110(5):1656-63. PubMed ID: 17510321
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pure antiestrogen-induced G1-arrest in myeloma cells results from the reduced kinase activity of cyclin D3/CDK6 complexes whereas apoptosis is mediated by endoplasmic reticulum-dependent caspases.
    Gauduchon J; Seguin A; Marsaud V; Clay D; Renoir JM; Sola B
    Int J Cancer; 2008 May; 122(9):2130-41. PubMed ID: 18183592
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The bone marrow microenvironment enhances multiple myeloma progression by exosome-mediated activation of myeloid-derived suppressor cells.
    Wang J; De Veirman K; De Beule N; Maes K; De Bruyne E; Van Valckenborgh E; Vanderkerken K; Menu E
    Oncotarget; 2015 Dec; 6(41):43992-4004. PubMed ID: 26556857
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.