These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

516 related articles for article (PubMed ID: 24929098)

  • 1. The regulation of reproductive neuroendocrine function by insulin and insulin-like growth factor-1 (IGF-1).
    Wolfe A; Divall S; Wu S
    Front Neuroendocrinol; 2014 Oct; 35(4):558-72. PubMed ID: 24929098
    [TBL] [Abstract][Full Text] [Related]  

  • 2. IGF-1 in the brain as a regulator of reproductive neuroendocrine function.
    Daftary SS; Gore AC
    Exp Biol Med (Maywood); 2005 May; 230(5):292-306. PubMed ID: 15855296
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of insulin-like growth factor-I in neuroendocrine function and the consequent effects on sexual maturation: inferences from animal models.
    Chandrashekar V; Bartke A
    Reprod Biol; 2003 Mar; 3(1):7-28. PubMed ID: 14666141
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Neuroendocrine mechanisms controlling the development in puberty. A literature overview].
    Ságodi L; Sólyom E; Kiss-Tóth E
    Orv Hetil; 2018 Jul; 159(29):1175-1182. PubMed ID: 30008234
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sex steroids, growth hormone, insulin-like growth factor-1: neuroendocrine and metabolic regulation in puberty.
    Mauras N; Rogol AD; Haymond MW; Veldhuis JD
    Horm Res; 1996; 45(1-2):74-80. PubMed ID: 8742123
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Disentangling puberty: novel neuroendocrine pathways and mechanisms for the control of mammalian puberty.
    Avendaño MS; Vazquez MJ; Tena-Sempere M
    Hum Reprod Update; 2017 Nov; 23(6):737-763. PubMed ID: 28961976
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Role of Insulin-like Growth Factor-1 (IGF-1) in the Control of Neuroendocrine Regulation of Growth.
    Al-Samerria S; Radovick S
    Cells; 2021 Oct; 10(10):. PubMed ID: 34685644
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of growth hormone overexpression and growth hormone resistance on neuroendocrine and reproductive functions in transgenic and knock-out mice.
    Bartke A; Chandrashekar V; Turyn D; Steger RW; Debeljuk L; Winters TA; Mattison JA; Danilovich NA; Croson W; Wernsing DR; Kopchick JJ
    Proc Soc Exp Biol Med; 1999 Nov; 222(2):113-23. PubMed ID: 10564535
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolic influences on neuroendocrine regulation of reproduction.
    Navarro VM; Kaiser UB
    Curr Opin Endocrinol Diabetes Obes; 2013 Aug; 20(4):335-41. PubMed ID: 23807606
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Leptin: a metabolic signal affecting central regulation of reproduction in the pig.
    Barb CR; Hausman GJ; Czaja K
    Domest Anim Endocrinol; 2005 Jul; 29(1):186-92. PubMed ID: 15927773
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Luteinizing hormone-releasing hormone (LHRH) receptors in the neuroendocrine-immune network. Biochemical bases and implications for reproductive physiopathology.
    Marchetti B; Gallo F; Farinella Z; Romeo C; Morale MC
    Ann N Y Acad Sci; 1996 Apr; 784():209-36. PubMed ID: 8651571
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neuroendocrinology of reproduction in teleost fish.
    Zohar Y; Muñoz-Cueto JA; Elizur A; Kah O
    Gen Comp Endocrinol; 2010 Feb; 165(3):438-55. PubMed ID: 19393655
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The consequences of altered somatotropic system on reproduction.
    Chandrashekar V; Zaczek D; Bartke A
    Biol Reprod; 2004 Jul; 71(1):17-27. PubMed ID: 15028633
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kisspepeptin-GPR54 signaling in the neuroendocrine reproductive axis.
    Gottsch ML; Clifton DK; Steiner RA
    Mol Cell Endocrinol; 2006 Jul; 254-255():91-6. PubMed ID: 16762492
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Physiological roles of the kisspeptin/GPR54 system in the neuroendocrine control of reproduction.
    Pineda R; Aguilar E; Pinilla L; Tena-Sempere M
    Prog Brain Res; 2010; 181():55-77. PubMed ID: 20478433
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of glia in the hypothalamus: implications for gonadal steroid feedback and reproductive neuroendocrine output.
    Garcia-Segura LM; Lorenz B; DonCarlos LL
    Reproduction; 2008 Apr; 135(4):419-29. PubMed ID: 18367504
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pituitary and testicular function in growth hormone receptor gene knockout mice.
    Chandrashekar V; Bartke A; Coschigano KT; Kopchick JJ
    Endocrinology; 1999 Mar; 140(3):1082-8. PubMed ID: 10067829
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neuroendocrine factors in the initiation of puberty: the emergent role of kisspeptin.
    Navarro VM; Castellano JM; García-Galiano D; Tena-Sempere M
    Rev Endocr Metab Disord; 2007 Mar; 8(1):11-20. PubMed ID: 17340172
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of kisspeptin signalling in the hypothalamic-pituitary-gonadal axis--current perspective.
    Javed Z; Qamar U; Sathyapalan T
    Endokrynol Pol; 2015; 66(6):534-47. PubMed ID: 26662653
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 60 YEARS OF NEUROENDOCRINOLOGY: The hypothalamo-pituitary-gonadal axis.
    Plant TM
    J Endocrinol; 2015 Aug; 226(2):T41-54. PubMed ID: 25901041
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.