These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
223 related articles for article (PubMed ID: 24929226)
1. A spatial model with pulsed releases to compare strategies for the sterile insect technique applied to the mosquito Aedes aegypti. Oléron Evans TP; Bishop SR Math Biosci; 2014 Aug; 254():6-27. PubMed ID: 24929226 [TBL] [Abstract][Full Text] [Related]
2. Advancing the art of mosquito control: the journey of the sterile insect technique against Aedes aegypti in Cuba. Gato R; Menéndez Z; Rodríguez M; Gutiérrez-Bugallo G; Del Carmen Marquetti M Infect Dis Poverty; 2024 Aug; 13(1):61. PubMed ID: 39198869 [TBL] [Abstract][Full Text] [Related]
3. Modelling Aedes aegypti mosquito control via transgenic and sterile insect techniques: endemics and emerging outbreaks. Seirin Lee S; Baker RE; Gaffney EA; White SM J Theor Biol; 2013 Aug; 331():78-90. PubMed ID: 23608633 [TBL] [Abstract][Full Text] [Related]
4. Sterile insect technique with accidental releases of sterile females. Impact on mosquito-borne diseases control when viruses are circulating. Dumont Y; Yatat-Djeumen IV Math Biosci; 2022 Jan; 343():108724. PubMed ID: 34748880 [TBL] [Abstract][Full Text] [Related]
5. Effectiveness of Wolbachia-mediated sterility coupled with sterile insect technique to suppress adult Aedes aegypti populations in Singapore: a synthetic control study. Bansal S; Lim JT; Chong CS; Dickens B; Ng Y; Deng L; Lee C; Tan LY; Kakani EG; Yoong Y; Du Yu D; Chain G; Ma P; Sim S; Ng LC; Tan CH Lancet Planet Health; 2024 Sep; 8(9):e617-e628. PubMed ID: 39243778 [TBL] [Abstract][Full Text] [Related]
6. A sterile insect technique pilot trial on Captiva Island: defining mosquito population parameters for sterile male releases using mark-release-recapture. Carvalho DO; Morreale R; Stenhouse S; Hahn DA; Gomez M; Lloyd A; Hoel D Parasit Vectors; 2022 Nov; 15(1):402. PubMed ID: 36320036 [TBL] [Abstract][Full Text] [Related]
7. Guidelines to site selection for population surveillance and mosquito control trials: a case study from Mauritius. Iyaloo DP; Elahee KB; Bheecarry A; Lees RS Acta Trop; 2014 Apr; 132 Suppl():S140-9. PubMed ID: 24280144 [TBL] [Abstract][Full Text] [Related]
8. Genetic control of Aedes aegypti: data-driven modelling to assess the effect of releasing different life stages and the potential for long-term suppression. Winskill P; Harris AF; Morgan SA; Stevenson J; Raduan N; Alphey L; McKemey AR; Donnelly CA Parasit Vectors; 2014 Feb; 7():68. PubMed ID: 24524678 [TBL] [Abstract][Full Text] [Related]
9. Optimal control of Aedes aegypti mosquitoes by the sterile insect technique and insecticide. Thomé RC; Yang HM; Esteva L Math Biosci; 2010 Jan; 223(1):12-23. PubMed ID: 19735668 [TBL] [Abstract][Full Text] [Related]
10. Limited mobility of target pests crucially lowers controllability when sterile insect releases are spatiotemporally biased. Ikegawa Y; Himuro C J Theor Biol; 2017 May; 421():93-100. PubMed ID: 28363862 [TBL] [Abstract][Full Text] [Related]
11. Modelling releases of sterile mosquitoes with different strategies. Li J; Yuan Z J Biol Dyn; 2015; 9():1-14. PubMed ID: 25377433 [TBL] [Abstract][Full Text] [Related]
12. Combined sterile insect technique and incompatible insect technique: The first proof-of-concept to suppress Aedes aegypti vector populations in semi-rural settings in Thailand. Kittayapong P; Ninphanomchai S; Limohpasmanee W; Chansang C; Chansang U; Mongkalangoon P PLoS Negl Trop Dis; 2019 Oct; 13(10):e0007771. PubMed ID: 31658265 [TBL] [Abstract][Full Text] [Related]
13. Novel Sterile Insect Technology Program Results in Suppression of a Field Mosquito Population and Subsequently to Reduced Incidence of Dengue. de Castro Poncio L; Dos Anjos FA; de Oliveira DA; Rebechi D; de Oliveira RN; Chitolina RF; Fermino ML; Bernardes LG; Guimarães D; Lemos PA; Silva MNE; Silvestre RGM; Bernardes ES; Paldi N J Infect Dis; 2021 Sep; 224(6):1005-1014. PubMed ID: 33507265 [TBL] [Abstract][Full Text] [Related]
14. Dispersal of Engineered Male Aedes aegypti Mosquitoes. Winskill P; Carvalho DO; Capurro ML; Alphey L; Donnelly CA; McKemey AR PLoS Negl Trop Dis; 2015 Nov; 9(11):e0004156. PubMed ID: 26554922 [TBL] [Abstract][Full Text] [Related]
15. Mathematical studies on the sterile insect technique for the Chikungunya disease and Aedes albopictus. Dumont Y; Tchuenche JM J Math Biol; 2012 Nov; 65(5):809-54. PubMed ID: 22038083 [TBL] [Abstract][Full Text] [Related]
16. Harnessing mosquito-Wolbachia symbiosis for vector and disease control. Bourtzis K; Dobson SL; Xi Z; Rasgon JL; Calvitti M; Moreira LA; Bossin HC; Moretti R; Baton LA; Hughes GL; Mavingui P; Gilles JR Acta Trop; 2014 Apr; 132 Suppl():S150-63. PubMed ID: 24252486 [TBL] [Abstract][Full Text] [Related]
17. Mathematical model to assess the control of Aedes aegypti mosquitoes by the sterile insect technique. Esteva L; Mo Yang H Math Biosci; 2005 Dec; 198(2):132-47. PubMed ID: 16125739 [TBL] [Abstract][Full Text] [Related]
18. The use of dragonfly nymphs in the control of Aedes aegypti. Sebastian A; Thu MM; Kyaw M; Sein MM Southeast Asian J Trop Med Public Health; 1980 Mar; 11(1):104-7. PubMed ID: 6447358 [TBL] [Abstract][Full Text] [Related]
19. A network model for control of dengue epidemic using sterile insect technique. Mishra A; Ambrosio B; Gakkhar S; Aziz-Alaoui MA Math Biosci Eng; 2018 Apr; 15(2):441-460. PubMed ID: 29161844 [TBL] [Abstract][Full Text] [Related]
20. Adaptation of the BG-Sentinel trap to capture male and female Aedes albopictus mosquitoes. Lacroix R; Delatte H; Hue T; Dehecq JS; Reiter P Med Vet Entomol; 2009 Jun; 23(2):160-2. PubMed ID: 19493196 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]