BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 24929279)

  • 21. Effect of enzymatic pretreatment of various lignocellulosic substrates on production of phenolic compounds and biomethane potential.
    Schroyen M; Vervaeren H; Vandepitte H; Van Hulle SW; Raes K
    Bioresour Technol; 2015 Sep; 192():696-702. PubMed ID: 26094196
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of thermal and alkaline pretreatment of giant miscanthus and Chinese fountaingrass on biogas production.
    Nkemka VN; Li Y; Hao X
    Water Sci Technol; 2016; 73(4):849-56. PubMed ID: 26901728
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Microalgae as substrates for fermentative biogas production in a combined biorefinery concept.
    Mussgnug JH; Klassen V; Schlüter A; Kruse O
    J Biotechnol; 2010 Oct; 150(1):51-6. PubMed ID: 20691224
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Modified batch anaerobic digestion assay for testing efficiencies of trace metal additives to enhance methane production of energy crops.
    Brulé M; Bolduan R; Seidelt S; Schlagermann P; Bott A
    Environ Technol; 2013; 34(13-16):2047-58. PubMed ID: 24350458
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Biogas production from boreal herbaceous grasses--specific methane yield and methane yield per hectare.
    Seppälä M; Paavola T; Lehtomäki A; Rintala J
    Bioresour Technol; 2009 Jun; 100(12):2952-8. PubMed ID: 19261471
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Steam explosion pretreatment for enhancing biogas production of late harvested hay.
    Bauer A; Lizasoain J; Theuretzbacher F; Agger JW; Rincón M; Menardo S; Saylor MK; Enguídanos R; Nielsen PJ; Potthast A; Zweckmair T; Gronauer A; Horn SJ
    Bioresour Technol; 2014 Aug; 166():403-10. PubMed ID: 24929812
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The impact of increasing energy crop addition on process performance and residual methane potential in anaerobic digestion.
    Lindorfer H; Pérez López C; Resch C; Braun R; Kirchmayr R
    Water Sci Technol; 2007; 56(10):55-63. PubMed ID: 18048977
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Environmental assessment of two different crop systems in terms of biomethane potential production.
    Bacenetti J; Fusi A; Negri M; Guidetti R; Fiala M
    Sci Total Environ; 2014 Jan; 466-467():1066-77. PubMed ID: 23994820
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Waste to watt: Anaerobic digestion of wastewater irrigated biomass for energy and fertiliser production.
    Shilpi S; Lamb D; Bolan N; Seshadri B; Choppala G; Naidu R
    J Environ Manage; 2019 Jun; 239():73-83. PubMed ID: 30889520
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Lime Pretreatment of Miscanthus: Impact on BMP and Batch Dry Co-Digestion with Cattle Manure.
    Thomas HL; Seira J; Escudié R; Carrère H
    Molecules; 2018 Jul; 23(7):. PubMed ID: 30004441
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Benefits of supplementing an industrial waste anaerobic digester with energy crops for increased biogas production.
    Nges IA; Escobar F; Fu X; Björnsson L
    Waste Manag; 2012 Jan; 32(1):53-9. PubMed ID: 21975301
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Key factors influencing the potential of catch crops for methane production.
    Molinuevo-Salces B; Fernández-Varela R; Uellendahl H
    Environ Technol; 2014 Aug; 35(13-16):1685-94. PubMed ID: 24956759
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Performance of a novel two-phase continuously fed leach bed reactor for demand-based biogas production from maize silage.
    Linke B; Rodríguez-Abalde Á; Jost C; Krieg A
    Bioresour Technol; 2015 Feb; 177():34-40. PubMed ID: 25479391
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Combined process for ethanol fermentation at high-solids loading and biogas digestion from unwashed steam-exploded corn stover.
    Wang Z; Lv Z; Du J; Mo C; Yang X; Tian S
    Bioresour Technol; 2014 Aug; 166():282-7. PubMed ID: 24926600
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Anaerobic digestion of straw and corn stover: The effect of biological process optimization and pre-treatment on total bio-methane yield and energy performance.
    Croce S; Wei Q; D'Imporzano G; Dong R; Adani F
    Biotechnol Adv; 2016 Dec; 34(8):1289-1304. PubMed ID: 27693604
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Methane yield through anaerobic digestion for various maize varieties in China.
    Gao R; Yuan X; Zhu W; Wang X; Chen S; Cheng X; Cui Z
    Bioresour Technol; 2012 Aug; 118():611-4. PubMed ID: 22704906
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A new algorithm to characterize biodegradability of biomass during anaerobic digestion: influence of lignin concentration on methane production potential.
    Triolo JM; Sommer SG; Møller HB; Weisbjerg MR; Jiang XY
    Bioresour Technol; 2011 Oct; 102(20):9395-402. PubMed ID: 21868219
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Energetic conversion of European semi-natural grassland silages through the integrated generation of solid fuel and biogas from biomass: energy yields and the fate of organic compounds.
    Hensgen F; Bühle L; Donnison I; Heinsoo K; Wachendorf M
    Bioresour Technol; 2014 Feb; 154():192-200. PubMed ID: 24393744
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Anaerobic digestion of spring and winter wheat: Comparison of net energy yields.
    Rincón B; Heaven S; Salter AM; Banks CJ
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2016 Oct; 51(12):1084-9. PubMed ID: 27409161
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Closing nutrient loops in a maize rotation. Catch crops to reduce nutrient leaching and increase biogas production by anaerobic co-digestion with dairy manure.
    Riau V; Burgos L; Camps F; Domingo F; Torrellas M; Antón A; Bonmatí A
    Waste Manag; 2021 May; 126():719-727. PubMed ID: 33878676
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.