These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
162 related articles for article (PubMed ID: 24929653)
1. Modelling human protein interaction networks as metric spaces has potential in disease research and drug target discovery. Fadhal E; Mwambene EC; Gamieldien J BMC Syst Biol; 2014 Jun; 8():68. PubMed ID: 24929653 [TBL] [Abstract][Full Text] [Related]
2. Protein interaction networks as metric spaces: a novel perspective on distribution of hubs. Fadhal E; Gamieldien J; Mwambene EC BMC Syst Biol; 2014 Jan; 8():6. PubMed ID: 24438364 [TBL] [Abstract][Full Text] [Related]
3. Analyzing of Molecular Networks for Human Diseases and Drug Discovery. Hao T; Wang Q; Zhao L; Wu D; Wang E; Sun J Curr Top Med Chem; 2018; 18(12):1007-1014. PubMed ID: 30101711 [TBL] [Abstract][Full Text] [Related]
4. Influence networks based on coexpression improve drug target discovery for the development of novel cancer therapeutics. Penrod NM; Moore JH BMC Syst Biol; 2014 Feb; 8():12. PubMed ID: 24495353 [TBL] [Abstract][Full Text] [Related]
5. Exploring the relationship between hub proteins and drug targets based on GO and intrinsic disorder. Fu Y; Guo Y; Wang Y; Luo J; Pu X; Li M; Zhang Z Comput Biol Chem; 2015 Jun; 56():41-8. PubMed ID: 25854804 [TBL] [Abstract][Full Text] [Related]
6. Cancer Stem Cells Therapeutic Target Database: The First Comprehensive Database for Therapeutic Targets of Cancer Stem Cells. Hu X; Cong Y; Luo HH; Wu S; Zhao LE; Liu Q; Yang Y Stem Cells Transl Med; 2017 Feb; 6(2):331-334. PubMed ID: 28191780 [TBL] [Abstract][Full Text] [Related]
7. Predicting synthetic lethal interactions using conserved patterns in protein interaction networks. Benstead-Hume G; Chen X; Hopkins SR; Lane KA; Downs JA; Pearl FMG PLoS Comput Biol; 2019 Apr; 15(4):e1006888. PubMed ID: 30995217 [TBL] [Abstract][Full Text] [Related]
8. Human cancer protein-protein interaction network: a structural perspective. Kar G; Gursoy A; Keskin O PLoS Comput Biol; 2009 Dec; 5(12):e1000601. PubMed ID: 20011507 [TBL] [Abstract][Full Text] [Related]
9. Chemical biology approaches to target validation in cancer. Blagg J; Workman P Curr Opin Pharmacol; 2014 Aug; 17():87-100. PubMed ID: 25175311 [TBL] [Abstract][Full Text] [Related]
10. Predicting new molecular targets for rhein using network pharmacology. Zhang A; Sun H; Yang B; Wang X BMC Syst Biol; 2012 Mar; 6():20. PubMed ID: 22433437 [TBL] [Abstract][Full Text] [Related]
11. A deep learning model based on sparse auto-encoder for prioritizing cancer-related genes and drug target combinations. Chang JW; Ding Y; Tahir Ul Qamar M; Shen Y; Gao J; Chen LL Carcinogenesis; 2019 Jul; 40(5):624-632. PubMed ID: 30944926 [TBL] [Abstract][Full Text] [Related]
12. Creating and analyzing pathway and protein interaction compendia for modelling signal transduction networks. Kirouac DC; Saez-Rodriguez J; Swantek J; Burke JM; Lauffenburger DA; Sorger PK BMC Syst Biol; 2012 May; 6():29. PubMed ID: 22548703 [TBL] [Abstract][Full Text] [Related]
13. Network pharmacology of cancer: From understanding of complex interactomes to the design of multi-target specific therapeutics from nature. Poornima P; Kumar JD; Zhao Q; Blunder M; Efferth T Pharmacol Res; 2016 Sep; 111():290-302. PubMed ID: 27329331 [TBL] [Abstract][Full Text] [Related]
14. Algebraic and topological indices of molecular pathway networks in human cancers. Hinow P; Rietman EA; Omar SI; Tuszyński JA Math Biosci Eng; 2015 Dec; 12(6):1289-302. PubMed ID: 26775864 [TBL] [Abstract][Full Text] [Related]
15. Topological and organizational properties of the products of house-keeping and tissue-specific genes in protein-protein interaction networks. Lin WH; Liu WC; Hwang MJ BMC Syst Biol; 2009 Mar; 3():32. PubMed ID: 19284572 [TBL] [Abstract][Full Text] [Related]
16. Incorporating topological information for predicting robust cancer subnetwork markers in human protein-protein interaction network. Khunlertgit N; Yoon BJ BMC Bioinformatics; 2016 Oct; 17(Suppl 13):351. PubMed ID: 27766944 [TBL] [Abstract][Full Text] [Related]
17. Drug target prediction and repositioning using an integrated network-based approach. Emig D; Ivliev A; Pustovalova O; Lancashire L; Bureeva S; Nikolsky Y; Bessarabova M PLoS One; 2013; 8(4):e60618. PubMed ID: 23593264 [TBL] [Abstract][Full Text] [Related]
18. Complex network theory for the identification and assessment of candidate protein targets. McGarry K; McDonald S Comput Biol Med; 2018 Jun; 97():113-123. PubMed ID: 29715596 [TBL] [Abstract][Full Text] [Related]
19. Targeting survivin in cancer: the cell-signalling perspective. Kanwar JR; Kamalapuram SK; Kanwar RK Drug Discov Today; 2011 Jun; 16(11-12):485-94. PubMed ID: 21511051 [TBL] [Abstract][Full Text] [Related]
20. An Integrated Systems Biology and Network-Based Approaches to Identify Novel Biomarkers in Breast Cancer Cell Lines Using Gene Expression Data. Khan A; Rehman Z; Hashmi HF; Khan AA; Junaid M; Sayaf AM; Ali SS; Hassan FU; Heng W; Wei DQ Interdiscip Sci; 2020 Jun; 12(2):155-168. PubMed ID: 32056139 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]