These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 24929653)

  • 21. In-Silico Evaluation of Genetic Alterations in Ovarian Carcinoma and Therapeutic Efficacy of NSC777201, as a Novel Multi-Target Agent for TTK, NEK2, and CDK1.
    Khedkar HN; Wang YC; Yadav VK; Srivastava P; Lawal B; Mokgautsi N; Sumitra MR; Wu ATH; Huang HS
    Int J Mol Sci; 2021 May; 22(11):. PubMed ID: 34072728
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Self-similarity of human protein interaction networks: a novel strategy of distinguishing proteins.
    Fadhal E; Gamieldien J; Mwambene EC
    Sci Rep; 2015 Feb; 5():7628. PubMed ID: 25720740
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The OncoPPi network of cancer-focused protein-protein interactions to inform biological insights and therapeutic strategies.
    Li Z; Ivanov AA; Su R; Gonzalez-Pecchi V; Qi Q; Liu S; Webber P; McMillan E; Rusnak L; Pham C; Chen X; Mo X; Revennaugh B; Zhou W; Marcus A; Harati S; Chen X; Johns MA; White MA; Moreno C; Cooper LA; Du Y; Khuri FR; Fu H
    Nat Commun; 2017 Feb; 8():14356. PubMed ID: 28205554
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Identification of drug target candidates of the swine pathogen Actinobacillus pleuropneumoniae by construction of protein-protein interaction network.
    Li S; Su Z; Zhang C; Xu Z; Chang X; Zhu J; Xiao R; Li L; Zhou R
    Genes Genomics; 2018 Aug; 40(8):847-856. PubMed ID: 30047117
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Network pharmacology for cancer drug discovery: are we there yet?
    Azmi AS
    Future Med Chem; 2012 May; 4(8):939-41. PubMed ID: 22650234
    [No Abstract]   [Full Text] [Related]  

  • 26. Oncogenes and tumor suppressor genes: comparative genomics and network perspectives.
    Zhu K; Liu Q; Zhou Y; Tao C; Zhao Z; Sun J; Xu H
    BMC Genomics; 2015; 16 Suppl 7(Suppl 7):S8. PubMed ID: 26099335
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Network-based approaches in drug discovery and early development.
    Harrold JM; Ramanathan M; Mager DE
    Clin Pharmacol Ther; 2013 Dec; 94(6):651-8. PubMed ID: 24025802
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Controllability in cancer metabolic networks according to drug targets as driver nodes.
    Asgari Y; Salehzadeh-Yazdi A; Schreiber F; Masoudi-Nejad A
    PLoS One; 2013; 8(11):e79397. PubMed ID: 24282504
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Integrating Biological Networks for Drug Target Prediction and Prioritization.
    Ji X; Freudenberg JM; Agarwal P
    Methods Mol Biol; 2019; 1903():203-218. PubMed ID: 30547444
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Protein-Protein Interaction (PPI) Network: Recent Advances in Drug Discovery.
    Athanasios A; Charalampos V; Vasileios T; Ashraf GM
    Curr Drug Metab; 2017; 18(1):5-10. PubMed ID: 28889796
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Network based approach to drug discovery: a mini review.
    Li P; Fu Y; Wang Y
    Mini Rev Med Chem; 2015; 15(8):687-95. PubMed ID: 25694073
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Identifying dysregulated pathways in cancers from pathway interaction networks.
    Liu KQ; Liu ZP; Hao JK; Chen L; Zhao XM
    BMC Bioinformatics; 2012 Jun; 13():126. PubMed ID: 22676414
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Text mining‑based drug discovery in cutaneous squamous cell carcinoma.
    Pan Y; Zhang Y; Liu J
    Oncol Rep; 2018 Dec; 40(6):3830-3842. PubMed ID: 30272325
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Network-based identification of novel connections among apoptotic signaling pathways in cancer.
    Wang N; Xu HL; Zhao X; Wen X; Wang FT; Wang SY; Fu LL; Liu B; Bao JK
    Appl Biochem Biotechnol; 2012 Jun; 167(3):621-31. PubMed ID: 22581077
    [TBL] [Abstract][Full Text] [Related]  

  • 35. SCNrank: spectral clustering for network-based ranking to reveal potential drug targets and its application in pancreatic ductal adenocarcinoma.
    Liu E; Zhang ZZ; Cheng X; Liu X; Cheng L
    BMC Med Genomics; 2020 Apr; 13(Suppl 5):50. PubMed ID: 32241274
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Drug target identification in sphingolipid metabolism by computational systems biology tools: metabolic control analysis and metabolic pathway analysis.
    Ozbayraktar FB; Ulgen KO
    J Biomed Inform; 2010 Aug; 43(4):537-49. PubMed ID: 20348024
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Machine learning prediction of oncology drug targets based on protein and network properties.
    Dezső Z; Ceccarelli M
    BMC Bioinformatics; 2020 Mar; 21(1):104. PubMed ID: 32171238
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A method for predicting target drug efficiency in cancer based on the analysis of signaling pathway activation.
    Artemov A; Aliper A; Korzinkin M; Lezhnina K; Jellen L; Zhukov N; Roumiantsev S; Gaifullin N; Zhavoronkov A; Borisov N; Buzdin A
    Oncotarget; 2015 Oct; 6(30):29347-56. PubMed ID: 26320181
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Topological network analysis of differentially expressed genes in cancer cells with acquired gefitinib resistance.
    Lee YS; Hwang SG; Kim JK; Park TH; Kim YR; Myeong HS; Kwon K; Jang CS; Noh YH; Kim SY
    Cancer Genomics Proteomics; 2015; 12(3):153-66. PubMed ID: 25977174
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A Drug Repurposing and Protein-Protein Interaction Network Study of Ribosomopathies Using Yeast as a Model System.
    Ertekin E; Gencturk E; Kasim M; Ulgen KO
    OMICS; 2020 Feb; 24(2):96-109. PubMed ID: 31895625
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.