BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 24929734)

  • 1. Glutamine, glutamate, and arginine-based acid resistance in Lactobacillus reuteri.
    Teixeira JS; Seeras A; Sanchez-Maldonado AF; Zhang C; Su MS; Gänzle MG
    Food Microbiol; 2014 Sep; 42():172-80. PubMed ID: 24929734
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Contribution of glutaminases to glutamine metabolism and acid resistance in Lactobacillus reuteri and other vertebrate host adapted lactobacilli.
    Li Q; Tao Q; Teixeira JS; Shu-Wei Su M; Gänzle MG
    Food Microbiol; 2020 Apr; 86():103343. PubMed ID: 31703887
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Contribution of glutamate decarboxylase in Lactobacillus reuteri to acid resistance and persistence in sourdough fermentation.
    Su MS; Schlicht S; Gänzle MG
    Microb Cell Fact; 2011 Aug; 10 Suppl 1(Suppl 1):S8. PubMed ID: 21995488
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of lineage-specific metabolic traits of Lactobacillus reuteri on sourdough microbial ecology.
    Lin XB; Gänzle MG
    Appl Environ Microbiol; 2014 Sep; 80(18):5782-9. PubMed ID: 25015888
    [TBL] [Abstract][Full Text] [Related]  

  • 5. γ-Glutamyl Cysteine Ligase of Lactobacillus reuteri Synthesizes γ-Glutamyl Dipeptides in Sourdough.
    Yan B; Chen YY; Wang W; Zhao J; Chen W; Gänzle M
    J Agric Food Chem; 2018 Nov; 66(46):12368-12375. PubMed ID: 30354106
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glutamine deamidation by cereal-associated lactic acid bacteria.
    Vermeulen N; Gänzle MG; Vogel RF
    J Appl Microbiol; 2007 Oct; 103(4):1197-205. PubMed ID: 17897224
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Control of acid resistance in Escherichia coli.
    Castanie-Cornet MP; Penfound TA; Smith D; Elliott JF; Foster JW
    J Bacteriol; 1999 Jun; 181(11):3525-35. PubMed ID: 10348866
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of the ecological role of genes mediating acid resistance in Lactobacillus reuteri during colonization of the gastrointestinal tract.
    Krumbeck JA; Marsteller NL; Frese SA; Peterson DA; Ramer-Tait AE; Hutkins RW; Walter J
    Environ Microbiol; 2016 Jul; 18(7):2172-84. PubMed ID: 26530032
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Environmental pH determines citrulline and ornithine release through the arginine deiminase pathway in Lactobacillus fermentum IMDO 130101.
    Vrancken G; Rimaux T; Weckx S; De Vuyst L; Leroy F
    Int J Food Microbiol; 2009 Nov; 135(3):216-22. PubMed ID: 19732985
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Glutaminase-Dependent Acid Resistance System: Qualitative and Quantitative Assays and Analysis of Its Distribution in Enteric Bacteria.
    Pennacchietti E; D'Alonzo C; Freddi L; Occhialini A; De Biase D
    Front Microbiol; 2018; 9():2869. PubMed ID: 30498489
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Partial purification and characterization of glutaminase from Lactobacillus reuteri KCTC3594.
    Jeon JM; Lee HI; Han SH; Chang CS; So JS
    Appl Biochem Biotechnol; 2010 Sep; 162(1):146-54. PubMed ID: 19784812
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biodetoxification of fungal mycotoxins zearalenone by engineered probiotic bacterium Lactobacillus reuteri with surface-displayed lactonohydrolase.
    Liu F; Malaphan W; Xing F; Yu B
    Appl Microbiol Biotechnol; 2019 Nov; 103(21-22):8813-8824. PubMed ID: 31628520
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Expression of the Clonostachys rosea lactonohydrolase gene by Lactobacillus reuteri to increase its zearalenone-removing ability.
    Yang WC; Hsu TC; Cheng KC; Liu JR
    Microb Cell Fact; 2017 Apr; 16(1):69. PubMed ID: 28438205
    [TBL] [Abstract][Full Text] [Related]  

  • 14. GlnR Negatively Regulates Glutamate-Dependent Acid Resistance in Lactobacillus brevis.
    Gong L; Ren C; Xu Y
    Appl Environ Microbiol; 2020 Mar; 86(7):. PubMed ID: 31953336
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ClC transporter activity modulates histidine catabolism in Lactobacillus reuteri by altering intracellular pH and membrane potential.
    Hall AE; Engevik MA; Oezguen N; Haag A; Versalovic J
    Microb Cell Fact; 2019 Dec; 18(1):212. PubMed ID: 31830990
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coexpression and secretion of endoglucanase and phytase genes in Lactobacillus reuteri.
    Wang L; Yang Y; Cai B; Cao P; Yang M; Chen Y
    Int J Mol Sci; 2014 Jul; 15(7):12842-60. PubMed ID: 25050780
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integrated genome-based probiotic relevance and safety evaluation of Lactobacillus reuteri PNW1.
    Alayande KA; Aiyegoro OA; Nengwekhulu TM; Katata-Seru L; Ateba CN
    PLoS One; 2020; 15(7):e0235873. PubMed ID: 32687505
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reconstructing the transcriptional regulatory network of probiotic
    Josephs-Spaulding J; Rajput A; Hefner Y; Szubin R; Balasubramanian A; Li G; Zielinski DC; Jahn L; Sommer M; Phaneuf P; Palsson BO
    mSystems; 2024 Mar; 9(3):e0125723. PubMed ID: 38349131
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of a proton-chloride antiporter (EriC) by Himar1 transposon mutagenesis in Lactobacillus reuteri and its role in histamine production.
    Hemarajata P; Spinler JK; Balderas MA; Versalovic J
    Antonie Van Leeuwenhoek; 2014 Mar; 105(3):579-92. PubMed ID: 24488273
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional characterization of sucrose phosphorylase and scrR, a regulator of sucrose metabolism in Lactobacillus reuteri.
    Teixeira JS; Abdi R; Su MS; Schwab C; Gänzle MG
    Food Microbiol; 2013 Dec; 36(2):432-9. PubMed ID: 24010626
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.