BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 24929734)

  • 21. The effect of low pH on protein expression by the probiotic bacterium Lactobacillus reuteri.
    Lee K; Lee HG; Pi K; Choi YJ
    Proteomics; 2008 Apr; 8(8):1624-30. PubMed ID: 18351691
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Biochemical analysis of respiratory metabolism in the heterofermentative Lactobacillus spicheri and Lactobacillus reuteri.
    Ianniello RG; Zheng J; Zotta T; Ricciardi A; Gänzle MG
    J Appl Microbiol; 2015 Sep; 119(3):763-75. PubMed ID: 25996113
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Sucrose utilization and impact of sucrose on glycosyltransferase expression in Lactobacillus reuteri.
    Schwab C; Walter J; Tannock GW; Vogel RF; Gänzle MG
    Syst Appl Microbiol; 2007 Sep; 30(6):433-43. PubMed ID: 17490840
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The early response to acid shock in Lactobacillus reuteri involves the ClpL chaperone and a putative cell wall-altering esterase.
    Wall T; Båth K; Britton RA; Jonsson H; Versalovic J; Roos S
    Appl Environ Microbiol; 2007 Jun; 73(12):3924-35. PubMed ID: 17449683
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fermentation conditions influence the fatty acid composition of the membranes of Lactobacillus reuteri I5007 and its survival following freeze-drying.
    Liu XT; Hou CL; Zhang J; Zeng XF; Qiao SY
    Lett Appl Microbiol; 2014 Oct; 59(4):398-403. PubMed ID: 24888635
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Metabolic pathway of α-ketoglutarate in Lactobacillus sanfranciscensis and Lactobacillus reuteri during sourdough fermentation.
    Zhang C; Gänzle MG
    J Appl Microbiol; 2010 Oct; 109(4):1301-10. PubMed ID: 20477886
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comparative genomics Lactobacillus reuteri from sourdough reveals adaptation of an intestinal symbiont to food fermentations.
    Zheng J; Zhao X; Lin XB; Gänzle M
    Sci Rep; 2015 Dec; 5():18234. PubMed ID: 26658825
    [TBL] [Abstract][Full Text] [Related]  

  • 28. II. Glutamine and glutamate.
    Tapiero H; Mathé G; Couvreur P; Tew KD
    Biomed Pharmacother; 2002 Nov; 56(9):446-57. PubMed ID: 12481981
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Deciphering the crucial roles of transcriptional regulator GadR on gamma-aminobutyric acid production and acid resistance in Lactobacillus brevis.
    Gong L; Ren C; Xu Y
    Microb Cell Fact; 2019 Jun; 18(1):108. PubMed ID: 31196094
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Brain slices from glutaminase-deficient mice metabolize less glutamine: a cellular metabolomic study with carbon 13 NMR.
    El Hage M; Masson J; Conjard-Duplany A; Ferrier B; Baverel G; Martin G
    J Cereb Blood Flow Metab; 2012 May; 32(5):816-24. PubMed ID: 22373647
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Genetic and phenotypic analysis of carbohydrate metabolism and transport in Lactobacillus reuteri.
    Zhao X; Gänzle MG
    Int J Food Microbiol; 2018 May; 272():12-21. PubMed ID: 29505955
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Glutamate production in islets of Langerhans: properties of phosphate-activated glutaminase.
    Michalik M; Nelson J; Erecińska M
    Metabolism; 1992 Dec; 41(12):1319-26. PubMed ID: 1361022
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Transcriptional and metabolomic consequences of LuxS inactivation reveal a metabolic rather than quorum-sensing role for LuxS in Lactobacillus reuteri 100-23.
    Wilson CM; Aggio RB; O'Toole PW; Villas-Boas S; Tannock GW
    J Bacteriol; 2012 Apr; 194(7):1743-6. PubMed ID: 22287522
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Genome-scale insights into the metabolic versatility of Limosilactobacillus reuteri.
    Luo H; Li P; Wang H; Roos S; Ji B; Nielsen J
    BMC Biotechnol; 2021 Jul; 21(1):46. PubMed ID: 34330235
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Synthesis of Taste-Active γ-Glutamyl Dipeptides during Sourdough Fermentation by Lactobacillus reuteri.
    Zhao CJ; Gänzle MG
    J Agric Food Chem; 2016 Oct; 64(40):7561-7568. PubMed ID: 27641253
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Proteomic analysis of the effect of bile salts on the intestinal and probiotic bacterium Lactobacillus reuteri.
    Lee K; Lee HG; Choi YJ
    J Biotechnol; 2008 Oct; 137(1-4):14-9. PubMed ID: 18680767
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Glutaminase catalyzes reaction of glutamate to GABA.
    Nanga RP; DeBrosse C; Singh A; D'Aquilla K; Hariharan H; Reddy R
    Biochem Biophys Res Commun; 2014 Jun; 448(4):361-4. PubMed ID: 24755074
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Histamine H2 Receptor-Mediated Suppression of Intestinal Inflammation by Probiotic Lactobacillus reuteri.
    Gao C; Major A; Rendon D; Lugo M; Jackson V; Shi Z; Mori-Akiyama Y; Versalovic J
    mBio; 2015 Dec; 6(6):e01358-15. PubMed ID: 26670383
    [TBL] [Abstract][Full Text] [Related]  

  • 39.
    Zhang S; Wang Z; Jiang J; Feng G; Fan S
    Food Funct; 2024 Apr; 15(7):3522-3538. PubMed ID: 38465872
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of transient acid stress on the proteome of intestinal probiotic Lactobacillus reuteri.
    Lee K; Pi K
    Biochemistry (Mosc); 2010 Apr; 75(4):460-5. PubMed ID: 20618135
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.