BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

81 related articles for article (PubMed ID: 24929991)

  • 1. The role of each compartment in a two-compartment vertical flow reactor for ferruginous mine water treatment.
    Yim GJ; Cheong YW; Hong JH; Hur W
    Water Res; 2014 Oct; 62():11-9. PubMed ID: 24929991
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sizing criteria for a low footprint passive mine water treatment system.
    Sapsford DJ; Williams KP
    Water Res; 2009 Feb; 43(2):423-32. PubMed ID: 19022469
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Iron-mineral accretion from acid mine drainage and its application in passive treatment.
    Florence K; Sapsford DJ; Johnson DB; Kay CM; Wolkersdorfer C
    Environ Technol; 2016; 37(11):1428-40. PubMed ID: 26675674
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of design factors for a cascade aerator to enhance the efficiency of an oxidation pond for ferruginous mine drainage.
    Oh C; Ji S; Cheong Y; Yim G; Hong JH
    Environ Technol; 2016 Oct; 37(19):2483-93. PubMed ID: 26936197
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of iron ochre from mine drainage treatment for removal of phosphorus from wastewater.
    Dobbie KE; Heal KV; Aumônier J; Smith KA; Johnston A; Younger PL
    Chemosphere; 2009 May; 75(6):795-800. PubMed ID: 19195678
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conversion of coal mine drainage ochre to water treatment reagent: Production, characterisation and application for P and Zn removal.
    Sapsford D; Santonastaso M; Thorn P; Kershaw S
    J Environ Manage; 2015 Sep; 160():7-15. PubMed ID: 26081304
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Removal of heavy metals in an abandoned mine drainage via ozone oxidation: a pilot-scale operation.
    Seo SH; Sung BW; Kim GJ; Chu KH; Um CY; Yun SL; Ra YH; Ko KB
    Water Sci Technol; 2010; 62(9):2115-20. PubMed ID: 21045339
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Passive treatment of ferruginous mine waters using high surface area media.
    Jarvis AP; Younger PL
    Water Res; 2001 Oct; 35(15):3643-8. PubMed ID: 11561625
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioelectrochemical treatment of acid mine drainage dominated with iron.
    Lefebvre O; Neculita CM; Yue X; Ng HY
    J Hazard Mater; 2012 Nov; 241-242():411-7. PubMed ID: 23084427
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phosphorus removal performance of acid mine drainage from wastewater.
    Ruihua L; Lin Z; Tao T; Bo L
    J Hazard Mater; 2011 Jun; 190(1-3):669-76. PubMed ID: 21514994
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sulfidogenic biotreatment of synthetic acid mine drainage and sulfide oxidation in anaerobic baffled reactor.
    Bekmezci OK; Ucar D; Kaksonen AH; Sahinkaya E
    J Hazard Mater; 2011 May; 189(3):670-6. PubMed ID: 21320747
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fe(II) oxidation during acid mine drainage neutralization in a pilot-scale Sequencing Batch Reactor.
    Zvimba JN; Mathye M; Vadapalli VR; Swanepoel H; Bologo L
    Water Sci Technol; 2013; 68(6):1406-11. PubMed ID: 24056441
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Laboratory studies using naturally occurring "green rust" to aid metal mine water remediation.
    Bearcock JM; Perkins WT; Pearce NJ
    J Hazard Mater; 2011 Jun; 190(1-3):466-73. PubMed ID: 21497995
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of a novel sizing approach for passive mine water treatment systems based on ferric iron sedimentation kinetics.
    Opitz J; Bauer M; Alte M; Peiffer S
    Water Res; 2023 Apr; 233():119770. PubMed ID: 36868114
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New perspectives on the passive treatment of ferruginous circumneutral mine waters in the UK.
    Sapsford DJ
    Environ Sci Pollut Res Int; 2013 Nov; 20(11):7827-36. PubMed ID: 23636592
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Geochemical and stable isotopic constraints on the generation and passive treatment of acidic, Fe-SO4 rich waters.
    Matthies R; Aplin AC; Boyce AJ; Jarvis AP
    Sci Total Environ; 2012 Mar; 420():238-49. PubMed ID: 22326322
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hexavalent chromium reduction with scrap iron in continuous-flow system Part 1: effect of feed solution pH.
    Gheju M; Iovi A; Balcu I
    J Hazard Mater; 2008 May; 153(1-2):655-62. PubMed ID: 17933460
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A modular continuous flow reactor system for the selective bio-oxidation of iron and precipitation of schwertmannite from mine-impacted waters.
    Hedrich S; Johnson DB
    Bioresour Technol; 2012 Feb; 106():44-9. PubMed ID: 22197072
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Treatment of arsenic contaminated water in a laboratory scale up-flow bio-column reactor.
    Mondal P; Majumder CB; Mohanty B
    J Hazard Mater; 2008 May; 153(1-2):136-45. PubMed ID: 17890001
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.