These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 24930016)

  • 61. Detection of Intermittent Claudication from Smartphone Inertial Data in Community Walks Using Machine Learning Classifiers.
    Pinto B; Correia MV; Paredes H; Silva I
    Sensors (Basel); 2023 Feb; 23(3):. PubMed ID: 36772621
    [TBL] [Abstract][Full Text] [Related]  

  • 62. An objective assessment of intermittent claudication by near-infrared spectroscopy.
    Komiyama T; Shigematsu H; Yasuhara H; Muto T
    Eur J Vasc Surg; 1994 May; 8(3):294-6. PubMed ID: 8013679
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Study on differentiation factors for main disease identification of intermittent claudication.
    Watanabe T; Yoneyama T; Toribatake Y; Hayashi H; Yokogawa N
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():4696-9. PubMed ID: 23366976
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Monitored daily ambulatory activity, inflammation, and oxidative stress in patients with claudication.
    Gardner AW; Parker DE; Montgomery PS; Blevins SM; Teague AM; Casanegra AI
    Angiology; 2014 Jul; 65(6):491-6. PubMed ID: 23695338
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Clinical Interest of Ambulatory Assessment of Physical Activity and Walking Capacity in Peripheral Artery Disease.
    de Müllenheim PY; Chaudru S; Mahé G; Prioux J; Le Faucheur A
    Scand J Med Sci Sports; 2016 Jul; 26(7):716-30. PubMed ID: 26173488
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Identification of the causative disease of intermittent claudication through walking motion analysis: feature analysis and differentiation.
    Watanabe T; Yoneyama T; Hayashi H; Toribatake Y
    ScientificWorldJournal; 2014; 2014():861529. PubMed ID: 25114980
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Monitoring mobility in older adults using global positioning system (GPS) watches and accelerometers: a feasibility study.
    Webber SC; Porter MM
    J Aging Phys Act; 2009 Oct; 17(4):455-67. PubMed ID: 19940324
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Intermittent claudication. A comparison between subjective and measured claudication walking distance.
    Siggaard-Andersen J; Petersen FB
    Angiology; 1968; 19(7):426-34. PubMed ID: 5664339
    [No Abstract]   [Full Text] [Related]  

  • 69. Development and feasibility of a smartphone, ECG and GPS based system for remotely monitoring exercise in cardiac rehabilitation.
    Worringham C; Rojek A; Stewart I
    PLoS One; 2011 Feb; 6(2):e14669. PubMed ID: 21347403
    [TBL] [Abstract][Full Text] [Related]  

  • 70. The Intermittent Claudication Research Study: vascular outcomes research using home health nurses.
    Feinglass J; Slavensky R; Tang L
    J Vasc Nurs; 1996 Mar; 14(1):8-11. PubMed ID: 8703798
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Mobility assessment of a rural population in the Netherlands using GPS measurements.
    Klous G; Smit LAM; Borlée F; Coutinho RA; Kretzschmar MEE; Heederik DJJ; Huss A
    Int J Health Geogr; 2017 Aug; 16(1):30. PubMed ID: 28793901
    [TBL] [Abstract][Full Text] [Related]  

  • 72. A new possibility to assess the perioperative walking capacity using a global positioning system in neurosurgical spine patients: a feasibility study.
    Bostelmann R; Schneller S; Cornelius JF; Steiger HJ; Fischer I
    Eur Spine J; 2016 Mar; 25(3):963-8. PubMed ID: 25855520
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Quantifying Distance Overestimation From Global Positioning System in Urban Spaces.
    Mooney SJ; Sheehan DM; Zulaika G; Rundle AG; McGill K; Behrooz MR; Lovasi GS
    Am J Public Health; 2016 Apr; 106(4):651-3. PubMed ID: 26890178
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Automated time activity classification based on global positioning system (GPS) tracking data.
    Wu J; Jiang C; Houston D; Baker D; Delfino R
    Environ Health; 2011 Nov; 10():101. PubMed ID: 22082316
    [TBL] [Abstract][Full Text] [Related]  

  • 75. A pilot investigation using global positioning systems into the outdoor activity of people with severe traumatic brain injury.
    Clark RA; Weragoda N; Paterson K; Telianidis S; Williams G
    J Neuroeng Rehabil; 2014 Mar; 11():37. PubMed ID: 24645752
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Accuracy of a low-cost global positioning system receiver for estimating grade during outdoor walking.
    de Müllenheim PY; Chaudru S; Gernigon M; Mahé G; Bickert S; Prioux J; Noury-Desvaux B; Le Faucheur A
    Physiol Meas; 2016 Oct; 37(10):1741-1756. PubMed ID: 27653453
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Pedometer ownership, motivation, and walking: do people walk the talk?
    Berry TR; Fraser SN; Spence JC; Garcia Bengoechea E
    Res Q Exerc Sport; 2007 Sep; 78(4):369-74. PubMed ID: 17941541
    [No Abstract]   [Full Text] [Related]  

  • 78. Development of a method for walking step observation based on large-scale GPS data.
    Nagata S; Nakaya T; Hanibuchi T; Nakaya N; Hozawa A
    Int J Health Geogr; 2022 Sep; 21(1):10. PubMed ID: 36071501
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Assessing Older Adults' Daily Mobility: A Comparison of GPS-Derived and Self-Reported Mobility Indicators.
    Fillekes MP; Kim EK; Trumpf R; Zijlstra W; Giannouli E; Weibel R
    Sensors (Basel); 2019 Oct; 19(20):. PubMed ID: 31635100
    [TBL] [Abstract][Full Text] [Related]  

  • 80. The inter- and intra-unit variability of a low-cost GPS data logger/receiver to study human outdoor walking in view of health and clinical studies.
    Abraham P; Noury-Desvaux B; Gernigon M; Mahé G; Sauvaget T; Leftheriotis G; Le Faucheur A
    PLoS One; 2012; 7(2):e31338. PubMed ID: 22363623
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.