These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 24930024)

  • 1. The degree of resistance of erythrocyte membrane cytoskeletal proteins to supra-physiologic concentrations of calcium: an in vitro study.
    Mostafavi E; Nargesi AA; Ghazizadeh Z; Larry M; Farahani RH; Morteza A; Esteghamati A; Vigneron C; Nakhjavani M
    J Membr Biol; 2014 Aug; 247(8):695-701. PubMed ID: 24930024
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Limited proteolysis of the erythrocyte membrane skeleton by calcium-dependent proteinases.
    Croall DE; Morrow JS; DeMartino GN
    Biochim Biophys Acta; 1986 Jul; 882(3):287-96. PubMed ID: 3015225
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Calcium-induced proteolysis of spectrin and band 3 protein in rat erythrocyte membranes.
    Pant HC; Virmani M; Gallant PE
    Biochem Biophys Res Commun; 1983 Dec; 117(2):372-7. PubMed ID: 6318755
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interaction of erythrocyte cytoskeletal proteins with band 3: rotational diffusion measurements.
    Wyatt K; Cherry RJ
    Biochem Soc Trans; 1990 Oct; 18(5):940. PubMed ID: 2083750
    [No Abstract]   [Full Text] [Related]  

  • 5. Protein 4.2 binds to the carboxyl-terminal EF-hands of erythroid alpha-spectrin in a calcium- and calmodulin-dependent manner.
    Korsgren C; Peters LL; Lux SE
    J Biol Chem; 2010 Feb; 285(7):4757-70. PubMed ID: 20007969
    [TBL] [Abstract][Full Text] [Related]  

  • 6. p-Chloromercuribenzoate-induced dissociation of cytoskeletal proteins in red blood cells of rats.
    Kunimoto M; Shibata K; Miura T
    Biochim Biophys Acta; 1987 Dec; 905(2):257-67. PubMed ID: 3689781
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Red cell membrane biology--introduction.
    Schrier SL
    Clin Haematol; 1985 Feb; 14(1):1-12. PubMed ID: 3157523
    [No Abstract]   [Full Text] [Related]  

  • 8. Changes in cytoskeletal proteins and their mRNAs during maturation of human erythroid progenitor cells.
    Wickrema A; Koury ST; Dai CH; Krantz SB
    J Cell Physiol; 1994 Sep; 160(3):417-26. PubMed ID: 8077279
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Restriction of the lateral motion of band 3 in the erythrocyte membrane by the cytoskeletal network: dependence on spectrin association state.
    Tsuji A; Ohnishi S
    Biochemistry; 1986 Oct; 25(20):6133-9. PubMed ID: 3790510
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of band 4.1 in the association of actin with erythrocyte membranes.
    Cohen CM; Foley SF
    Biochim Biophys Acta; 1982 Jun; 688(3):691-701. PubMed ID: 6889438
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ca2(+)-dependent regulation of the spectrin/actin interaction by calmodulin and protein 4.1.
    Tanaka T; Kadowaki K; Lazarides E; Sobue K
    J Biol Chem; 1991 Jan; 266(2):1134-40. PubMed ID: 1985939
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The interaction of DNR and glutaraldehyde with cell membrane proteins leads to morphological changes in erythrocytes.
    Marczak A; Jóźwiak Z
    Cancer Lett; 2008 Feb; 260(1-2):118-26. PubMed ID: 18060688
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural alterations of the erythrocyte membrane proteins in diabetic retinopathy.
    Petropoulos IK; Margetis PI; Antonelou MH; Koliopoulos JX; Gartaganis SP; Margaritis LH; Papassideri IS
    Graefes Arch Clin Exp Ophthalmol; 2007 Aug; 245(8):1179-88. PubMed ID: 17219119
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The contribution of genetic and environmental factors to quantitative variability of erythrocyte membrane proteins in primary hypotension.
    Ivanov VP; Polonikov AV; Solodilova MA
    Ann Hum Genet; 2005 Jan; 69(Pt 1):25-35. PubMed ID: 15638825
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Study of human erythrocyte membrane protein interactions by selective solubilization of Triton-skeletons.
    Navarro-Prigent MJ; Séguin I; Boivin P; Dhermy D
    Biol Cell; 1995; 83(1):33-8. PubMed ID: 7647706
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional characterization of human erythrocyte spectrin alpha and beta chains: association with actin and erythrocyte protein 4.1.
    Cohen CM; Langley RC
    Biochemistry; 1984 Sep; 23(19):4488-95. PubMed ID: 6487612
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Membrane protein interactions in sickle red blood cells: evidence of abnormal protein 3 function.
    Platt OS; Falcone JF
    Blood; 1995 Sep; 86(5):1992-8. PubMed ID: 7655026
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modulation of erythrocyte membrane material properties by Ca2+ and calmodulin. Implications for their role in regulation of skeletal protein interactions.
    Takakuwa Y; Mohandas N
    J Clin Invest; 1988 Aug; 82(2):394-400. PubMed ID: 3403710
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hereditary spherocytosis of man. Defective cytoskeletal interactions in the erythrocyte membrane.
    Sawyer WH; Hill JS; Howlett GJ; Wiley JS
    Biochem J; 1983 May; 211(2):349-56. PubMed ID: 6870835
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hereditary spherocytosis of man. Altered binding of cytoskeletal components to the erythrocyte membrane.
    Hill JS; Sawyer WH; Howlett GJ; Wiley JS
    Biochem J; 1982 Feb; 201(2):259-66. PubMed ID: 7082289
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.