These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 24930101)

  • 1. Commercial materials as cathode for hydrogen production in microbial electrolysis cell.
    Farhangi S; Ebrahimi S; Niasar MS
    Biotechnol Lett; 2014 Oct; 36(10):1987-92. PubMed ID: 24930101
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Introducing an affordable catalyst for biohydrogen production in microbial electrolysis cells.
    Ghasemi B; Yaghmaei S; Abdi K; Mardanpour MM; Haddadi SA
    J Biosci Bioeng; 2020 Jan; 129(1):67-76. PubMed ID: 31445821
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of low-cost cathode catalysts for high yield biohydrogen production in microbial electrolysis cell.
    Wang L; Chen Y; Ye Y; Lu B; Zhu S; Shen S
    Water Sci Technol; 2011; 63(3):440-8. PubMed ID: 21278465
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High surface area stainless steel brushes as cathodes in microbial electrolysis cells.
    Call DF; Merrill MD; Logan BE
    Environ Sci Technol; 2009 Mar; 43(6):2179-83. PubMed ID: 19368232
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of exoelectrogenic bioanode and study on feasibility of hydrogen production using abiotic VITO-CoRE™ and VITO-CASE™ electrodes in a single chamber microbial electrolysis cell (MEC) at low current densities.
    Pasupuleti SB; Srikanth S; Venkata Mohan S; Pant D
    Bioresour Technol; 2015 Nov; 195():131-8. PubMed ID: 26187582
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A solar-powered microbial electrolysis cell with a platinum catalyst-free cathode to produce hydrogen.
    Chae KJ; Choi MJ; Kim KY; Ajayi FF; Chang IS; Kim IS
    Environ Sci Technol; 2009 Dec; 43(24):9525-30. PubMed ID: 20000551
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mo
    Lu S; Lu B; Tan G; Moe W; Xu W; Wang Y; Xing D; Zhu X
    Biosens Bioelectron; 2020 Nov; 167():112491. PubMed ID: 32798808
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient H
    Song S; Huang L; Zhou P
    Appl Microbiol Biotechnol; 2023 Jan; 107(1):391-404. PubMed ID: 36413265
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrogen production using single-chamber membrane-free microbial electrolysis cells.
    Hu H; Fan Y; Liu H
    Water Res; 2008 Sep; 42(15):4172-8. PubMed ID: 18718624
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrogen production from switchgrass via an integrated pyrolysis-microbial electrolysis process.
    Lewis AJ; Ren S; Ye X; Kim P; Labbe N; Borole AP
    Bioresour Technol; 2015 Nov; 195():231-41. PubMed ID: 26210530
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cooperative cathode electrode and in situ deposited copper for subsequent enhanced Cd(II) removal and hydrogen evolution in bioelectrochemical systems.
    Wang Q; Huang L; Pan Y; Zhou P; Quan X; Logan BE; Chen H
    Bioresour Technol; 2016 Jan; 200():565-71. PubMed ID: 26528907
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancing biohydrogen production from sugar industry wastewater using Ni, Ni-Co and Ni-Co-P electrodeposits as cathodes in microbial electrolysis cells.
    Chaurasia AK; Mondal P
    Chemosphere; 2022 Jan; 286(Pt 3):131728. PubMed ID: 34416586
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Innovative self-powered submersible microbial electrolysis cell (SMEC) for biohydrogen production from anaerobic reactors.
    Zhang Y; Angelidaki I
    Water Res; 2012 May; 46(8):2727-36. PubMed ID: 22402271
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimization of the cathode material for nitrate removal by a paired electrolysis process.
    Reyter D; Bélanger D; Roué L
    J Hazard Mater; 2011 Aug; 192(2):507-13. PubMed ID: 21703761
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improved bio-hydrogen production from glucose by adding a specific methane inhibitor to microbial electrolysis cells with a double anode arrangement.
    Zhang J; Bai Y; Fan Y; Hou H
    J Biosci Bioeng; 2016 Oct; 122(4):488-93. PubMed ID: 27094956
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microbial fuel cell cathodes with poly(dimethylsiloxane) diffusion layers constructed around stainless steel mesh current collectors.
    Zhang F; Saito T; Cheng S; Hickner MA; Logan BE
    Environ Sci Technol; 2010 Feb; 44(4):1490-5. PubMed ID: 20099808
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative evaluation of effects of different cathode materials on performance in Cd(II)-reduced microbial electrolysis cells.
    Zhou R; Zhou S; He C
    Bioresour Technol; 2020 Jul; 307():123198. PubMed ID: 32217438
    [TBL] [Abstract][Full Text] [Related]  

  • 18. H
    Rivera I; Bakonyi P; Buitrón G
    Chemosphere; 2017 Mar; 171():379-385. PubMed ID: 28033568
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fate of H2 in an upflow single-chamber microbial electrolysis cell using a metal-catalyst-free cathode.
    Lee HS; Torres CI; Parameswaran P; Rittmann BE
    Environ Sci Technol; 2009 Oct; 43(20):7971-6. PubMed ID: 19921922
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phosphate recovery as struvite within a single chamber microbial electrolysis cell.
    Cusick RD; Logan BE
    Bioresour Technol; 2012 Mar; 107():110-5. PubMed ID: 22212692
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.