These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 24930174)

  • 1. Perceptual grouping effects on cursor movement expectations.
    Dorneich MC; Hamblin CJ; Lancaster JA; Olofinboba O
    Hum Factors; 2014 May; 56(3):535-52. PubMed ID: 24930174
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Brain-computer interfaces for 1-D and 2-D cursor control: designs using volitional control of the EEG spectrum or steady-state visual evoked potentials.
    Trejo LJ; Rosipal R; Matthews B
    IEEE Trans Neural Syst Rehabil Eng; 2006 Jun; 14(2):225-9. PubMed ID: 16792300
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Comparative Study on Java Technologies for Focus and Cursor Handling in Accessible Dynamic Interactions.
    Jitngernmadan P; Miesenberger K
    Stud Health Technol Inform; 2015; 217():267-73. PubMed ID: 26294483
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conversion of EEG activity into cursor movement by a brain-computer interface (BCI).
    Fabiani GE; McFarland DJ; Wolpaw JR; Pfurtscheller G
    IEEE Trans Neural Syst Rehabil Eng; 2004 Sep; 12(3):331-8. PubMed ID: 15473195
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cursor orientation and computer screen positioning movements.
    Phillips JG; Triggs TJ; Meehan JW
    Hum Factors; 2001; 43(3):435-41. PubMed ID: 11866198
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic cursor gain and tactual feedback in the capture of cursor movements.
    Keyson DV
    Ergonomics; 1997 Dec; 40(12):1287-98. PubMed ID: 9416013
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Forward/up directional incompatibilities during cursor placement within graphical user interfaces.
    Phillips JG; Triggs TJ; Meehan JW
    Ergonomics; 2005 May; 48(6):722-35. PubMed ID: 16087505
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Brain-computer interface (BCI) operation: signal and noise during early training sessions.
    McFarland DJ; Sarnacki WA; Vaughan TM; Wolpaw JR
    Clin Neurophysiol; 2005 Jan; 116(1):56-62. PubMed ID: 15589184
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wearable wireless User Interface Cursor-Controller (UIC-C).
    Marjanovic N; Kerr K; Aranda R; Hickey R; Esmailbeigi H
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():3852-3855. PubMed ID: 29060738
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Remapping hand movements in a novel geometrical environment.
    Mosier KM; Scheidt RA; Acosta S; Mussa-Ivaldi FA
    J Neurophysiol; 2005 Dec; 94(6):4362-72. PubMed ID: 16148276
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evidence for continuous processing of visual information in a manual video-aiming task.
    Proteau L; Roujoula A; Messier J
    J Mot Behav; 2009 May; 41(3):219-31. PubMed ID: 19366655
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Equipment control in a sterile environment using the Gyromouse and a new interface, the user interface (UI) wand.
    Stefels CN; Kneissner J; Aarnink RG; Kaufholz P; Grimbergen CA; Dankelman J
    Minim Invasive Ther Allied Technol; 2007; 16(3):163-72. PubMed ID: 17573621
    [TBL] [Abstract][Full Text] [Related]  

  • 13. United States experience on the utilization of man's capabilities in a space environment.
    Mathews CW
    Life Sci Space Res; 1963; 1():141-59. PubMed ID: 12056422
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sensorimotor rhythm-based brain-computer interface (BCI): feature selection by regression improves performance.
    McFarland DJ; Wolpaw JR
    IEEE Trans Neural Syst Rehabil Eng; 2005 Sep; 13(3):372-9. PubMed ID: 16200760
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Positioning graphical objects on computer screens: a three-phase model.
    Pastel R
    Hum Factors; 2011 Feb; 53(1):22-37. PubMed ID: 21469531
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characteristics of cursor trajectories controlled by the computer mouse.
    Phillips JG; Triggs TJ
    Ergonomics; 2001 Apr; 44(5):527-36. PubMed ID: 11345495
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Testing for controlled variables: a model-based approach to determining the perceptual basis of behavior.
    Marken RS
    Atten Percept Psychophys; 2014 Jan; 76(1):255-63. PubMed ID: 24101345
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Significant improvement in one-dimensional cursor control using Laplacian electroencephalography over electroencephalography.
    Boudria Y; Feltane A; Besio W
    J Neural Eng; 2014 Jun; 11(3):035014. PubMed ID: 24836436
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adaptation to visual feedback delay in a redundant motor task.
    Farshchiansadegh A; Ranganathan R; Casadio M; Mussa-Ivaldi FA
    J Neurophysiol; 2015 Jan; 113(2):426-33. PubMed ID: 25339704
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Joystick acquisition in tufted capuchins (Cebus apella).
    Leighty KA; Fragaszy DM
    Anim Cogn; 2003 Sep; 6(3):141-8. PubMed ID: 12838395
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.