These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 24930637)

  • 1. Trapping and release of giant unilamellar vesicles in microfluidic wells.
    Yamada A; Lee S; Bassereau P; Baroud CN
    Soft Matter; 2014 Aug; 10(32):5878-85. PubMed ID: 24930637
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microfluidic trapping of giant unilamellar vesicles to study transport through a membrane pore.
    Robinson T; Kuhn P; Eyer K; Dittrich PS
    Biomicrofluidics; 2013; 7(4):44105. PubMed ID: 24404039
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Membrane permeability to water measured by microfluidic trapping of giant vesicles.
    Bhatia T; Robinson T; Dimova R
    Soft Matter; 2020 Aug; 16(31):7359-7369. PubMed ID: 32696791
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A membrane filtering method for the purification of giant unilamellar vesicles.
    Tamba Y; Terashima H; Yamazaki M
    Chem Phys Lipids; 2011 Jul; 164(5):351-8. PubMed ID: 21524642
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preparation and mechanical characterisation of giant unilamellar vesicles by a microfluidic method.
    Karamdad K; Law RV; Seddon JM; Brooks NJ; Ces O
    Lab Chip; 2015 Jan; 15(2):557-62. PubMed ID: 25413588
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Point-to-Plane Nonhomogeneous Electric-Field-Induced Simultaneous Formation of Giant Unilamellar Vesicles (GUVs) and Lipid Tubes.
    Zhu C; Zhang Y; Wang Y; Li Q; Mu W; Han X
    Chemistry; 2016 Feb; 22(9):2906-9. PubMed ID: 26756162
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electroformation of giant unilamellar vesicles from erythrocyte membranes under low-salt conditions.
    Mikelj M; Praper T; Demič R; Hodnik V; Turk T; Anderluh G
    Anal Biochem; 2013 Apr; 435(2):174-80. PubMed ID: 23333270
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microfluidic Deformability Study of an Innovative Blood Analogue Fluid Based on Giant Unilamellar Vesicles.
    Carvalho DAM; Rodrigues ARO; Faustino V; Pinho D; Castanheira EMS; Lima R
    J Funct Biomater; 2018 Dec; 9(4):. PubMed ID: 30518160
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Giant unilamellar vesicles - a perfect tool to visualize phase separation and lipid rafts in model systems.
    Wesołowska O; Michalak K; Maniewska J; Hendrich AB
    Acta Biochim Pol; 2009; 56(1):33-9. PubMed ID: 19287805
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An integrated microfluidic platform to fabricate single-micrometer asymmetric giant unilamellar vesicles (GUVs) using dielectrophoretic separation of microemulsions.
    Maktabi S; Malmstadt N; Schertzer JW; Chiarot PR
    Biomicrofluidics; 2021 Mar; 15(2):024112. PubMed ID: 33912267
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Production of giant unilamellar vesicles by the water-in-oil emulsion-transfer method without high internal concentrations of sugars.
    Tsuji G; Sunami T; Ichihashi N
    J Biosci Bioeng; 2018 Oct; 126(4):540-545. PubMed ID: 29793863
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrathin shell double emulsion templated giant unilamellar lipid vesicles with controlled microdomain formation.
    Arriaga LR; Datta SS; Kim SH; Amstad E; Kodger TE; Monroy F; Weitz DA
    Small; 2014 Mar; 10(5):950-6. PubMed ID: 24150883
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Shape changes and vesicle fission of giant unilamellar vesicles of liquid-ordered phase membrane induced by lysophosphatidylcholine.
    Tanaka T; Sano R; Yamashita Y; Yamazaki M
    Langmuir; 2004 Oct; 20(22):9526-34. PubMed ID: 15491182
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultra-high capacity microfluidic trapping of giant vesicles for high-throughput membrane studies.
    Yandrapalli N; Robinson T
    Lab Chip; 2019 Feb; 19(4):626-633. PubMed ID: 30632596
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optical stretching of giant unilamellar vesicles with an integrated dual-beam optical trap.
    Solmaz ME; Biswas R; Sankhagowit S; Thompson JR; Mejia CA; Malmstadt N; Povinelli ML
    Biomed Opt Express; 2012 Oct; 3(10):2419-27. PubMed ID: 23082284
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microfluidic production and characterization of biofunctionalized giant unilamellar vesicles for targeted intracellular cargo delivery.
    Staufer O; Antona S; Zhang D; Csatári J; Schröter M; Janiesch JW; Fabritz S; Berger I; Platzman I; Spatz JP
    Biomaterials; 2021 Jan; 264():120203. PubMed ID: 32987317
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesizing artificial cells from giant unilamellar vesicles: state-of-the art in the development of microfluidic technology.
    Matosevic S
    Bioessays; 2012 Nov; 34(11):992-1001. PubMed ID: 22926929
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single-molecule manipulation of macromolecules on GUV or SUV membranes using optical tweezers.
    Wang Y; Kumar A; Jin H; Zhang Y
    Biophys J; 2021 Dec; 120(24):5454-5465. PubMed ID: 34813728
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrodynamic filtration in microfluidic channels as size-selection process for giant unilamellar vesicles.
    Woo Y; Heo Y; Shin K; Yi GR
    J Biomed Nanotechnol; 2013 Apr; 9(4):610-4. PubMed ID: 23621019
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Macroscopic consequences of the action of phospholipase C on giant unilamellar liposomes.
    Holopainen JM; Angelova MI; Söderlund T; Kinnunen PK
    Biophys J; 2002 Aug; 83(2):932-43. PubMed ID: 12124275
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.