BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 24930698)

  • 1. Interconnected network of MnO2 nanowires with a "cocoonlike" morphology: redox couple-mediated performance enhancement in symmetric aqueous supercapacitor.
    Maiti S; Pramanik A; Mahanty S
    ACS Appl Mater Interfaces; 2014 Jul; 6(13):10754-62. PubMed ID: 24930698
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Facile coating of manganese oxide on tin oxide nanowires with high-performance capacitive behavior.
    Yan J; Khoo E; Sumboja A; Lee PS
    ACS Nano; 2010 Jul; 4(7):4247-55. PubMed ID: 20593844
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Redox deposition of nanoscale metal oxides on carbon for next-generation electrochemical capacitors.
    Sassin MB; Chervin CN; Rolison DR; Long JW
    Acc Chem Res; 2013 May; 46(5):1062-74. PubMed ID: 22380783
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Facile synthesis of graphite/PEDOT/MnO2 composites on commercial supercapacitor separator membranes as flexible and high-performance supercapacitor electrodes.
    Tang P; Han L; Zhang L
    ACS Appl Mater Interfaces; 2014 Jul; 6(13):10506-15. PubMed ID: 24905133
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct Chemical Synthesis of MnO2 Nanowhiskers on Transition-Metal Carbide Surfaces for Supercapacitor Applications.
    Rakhi RB; Ahmed B; Anjum D; Alshareef HN
    ACS Appl Mater Interfaces; 2016 Jul; 8(29):18806-14. PubMed ID: 27377125
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Graphene-patched CNT/MnO2 nanocomposite papers for the electrode of high-performance flexible asymmetric supercapacitors.
    Jin Y; Chen H; Chen M; Liu N; Li Q
    ACS Appl Mater Interfaces; 2013 Apr; 5(8):3408-16. PubMed ID: 23488813
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Faradic redox active material of Cu7S4 nanowires with a high conductance for flexible solid state supercapacitors.
    Javed MS; Dai S; Wang M; Xi Y; Lang Q; Guo D; Hu C
    Nanoscale; 2015 Aug; 7(32):13610-8. PubMed ID: 26206591
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-dimensional ordered macroporous MnO2/carbon nanocomposites as high-performance electrodes for asymmetric supercapacitors.
    Yang C; Zhou M; Xu Q
    Phys Chem Chem Phys; 2013 Dec; 15(45):19730-40. PubMed ID: 24141452
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reduced graphene oxide anchored Cu(OH)2 as a high performance electrochemical supercapacitor.
    Pramanik A; Maiti S; Mahanty S
    Dalton Trans; 2015 Sep; 44(33):14604-12. PubMed ID: 26208312
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancing pseudocapacitive charge storage in polymer templated mesoporous materials.
    Rauda IE; Augustyn V; Dunn B; Tolbert SH
    Acc Chem Res; 2013 May; 46(5):1113-24. PubMed ID: 23485203
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Composite manganese oxide percolating networks as a suspension electrode for an asymmetric flow capacitor.
    Hatzell KB; Fan L; Beidaghi M; Boota M; Pomerantseva E; Kumbur EC; Gogotsi Y
    ACS Appl Mater Interfaces; 2014 Jun; 6(11):8886-93. PubMed ID: 24758221
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anion-Based Pseudocapacitance of the Perovskite Library La
    Alexander CT; Mefford JT; Saunders J; Forslund RP; Johnston KP; Stevenson KJ
    ACS Appl Mater Interfaces; 2019 Feb; 11(5):5084-5094. PubMed ID: 30640433
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-performance asymmetric supercapacitor based on graphene hydrogel and nanostructured MnO2.
    Gao H; Xiao F; Ching CB; Duan H
    ACS Appl Mater Interfaces; 2012 May; 4(5):2801-10. PubMed ID: 22545683
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-supported supercapacitor membrane through incorporating MnO2 nanowires into carbon nanotube networks.
    Fang Y; Liu J; Li J
    J Nanosci Nanotechnol; 2010 Aug; 10(8):5099-105. PubMed ID: 21125856
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three-dimensional metal/oxide nanocone arrays for high-performance electrochemical pseudocapacitors.
    Qiu Y; Zhao Y; Yang X; Li W; Wei Z; Xiao J; Leung SF; Lin Q; Wu H; Zhang Y; Fan Z; Yang S
    Nanoscale; 2014 Apr; 6(7):3626-31. PubMed ID: 24562413
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrothermal synthesis and electrochemical performances of 1.7 V NiMoO₄⋅xH₂O||FeMoO₄ aqueous hybrid supercapacitor.
    Senthilkumar B; Selvan RK
    J Colloid Interface Sci; 2014 Jul; 426():280-6. PubMed ID: 24863794
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced Pseudocapacitive Performance of α-MnO
    Jabeen N; Xia Q; Savilov SV; Aldoshin SM; Yu Y; Xia H
    ACS Appl Mater Interfaces; 2016 Dec; 8(49):33732-33740. PubMed ID: 27960432
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Advanced three-dimensional hierarchical porous
    Su X; Liang Z; He Q; Guo Y; Luo G; Han S; Yu L
    Nanotechnology; 2024 Apr; 35(26):. PubMed ID: 35045400
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Supercapacitor performance of perovskite La
    Lang X; Mo H; Hu X; Tian H
    Dalton Trans; 2017 Oct; 46(40):13720-13730. PubMed ID: 28956030
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A colloidal pseudocapacitor: direct use of Fe(NO₃)₃ in electrode can lead to a high performance alkaline supercapacitor system.
    Chen X; Chen K; Wang H; Xue D
    J Colloid Interface Sci; 2015 Apr; 444():49-57. PubMed ID: 25585287
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.