These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 24930698)

  • 21. Co-electrodeposition of RuO2-MnO2 nanowires and the contribution of RuO2 to the capacitance increase.
    Gui Z; Gillette E; Duay J; Hu J; Kim N; Lee SB
    Phys Chem Chem Phys; 2015 Jun; 17(23):15173-80. PubMed ID: 25990197
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Modification in supercapacitive behavior of CoO-rGO composite thin film from exposure to ferri/ferrocyanide redox active couple.
    Shelke AR; Lokhande AC; Pujari RB; Lokhande CD
    J Colloid Interface Sci; 2018 Jul; 522():111-119. PubMed ID: 29579562
    [TBL] [Abstract][Full Text] [Related]  

  • 23. High-energy MnO2 nanowire/graphene and graphene asymmetric electrochemical capacitors.
    Wu ZS; Ren W; Wang DW; Li F; Liu B; Cheng HM
    ACS Nano; 2010 Oct; 4(10):5835-42. PubMed ID: 20857919
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Enhancing electrochemical reaction sites in nickel-cobalt layered double hydroxides on zinc tin oxide nanowires: a hybrid material for an asymmetric supercapacitor device.
    Wang X; Sumboja A; Lin M; Yan J; Lee PS
    Nanoscale; 2012 Nov; 4(22):7266-72. PubMed ID: 23076678
    [TBL] [Abstract][Full Text] [Related]  

  • 25. YbCl₃ electrode in alkaline aqueous electrolyte with high pseudocapacitance.
    Chen K; Xue D
    J Colloid Interface Sci; 2014 Jun; 424():84-9. PubMed ID: 24767502
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Intertwined nanocarbon and manganese oxide hybrid foam for high-energy supercapacitors.
    Wang W; Guo S; Bozhilov KN; Yan D; Ozkan M; Ozkan CS
    Small; 2013 Nov; 9(21):3714-21. PubMed ID: 23650047
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Rational Surface Tailoring Oxygen Functional Groups on Carbon Spheres for Capacitive Mechanistic Study.
    Zhang D; Wang J; He C; Wang Y; Guan T; Zhao J; Qiao J; Li K
    ACS Appl Mater Interfaces; 2019 Apr; 11(14):13214-13224. PubMed ID: 30888151
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Concentration dependence of graphene oxide-nanoneedle manganese oxide composites reduced by hydrazine hydrate for an electrochemical supercapacitor.
    Kim M; Hwang Y; Min K; Kim J
    Phys Chem Chem Phys; 2013 Oct; 15(37):15602-11. PubMed ID: 23942656
    [TBL] [Abstract][Full Text] [Related]  

  • 29. High-voltage and high-rate symmetric supercapacitor based on MnO2-polypyrrole hybrid nanofilm.
    Wang C; Zhan Y; Wu L; Li Y; Liu J
    Nanotechnology; 2014 Aug; 25(30):305401. PubMed ID: 25008287
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Platelet CMK-5 as an excellent mesoporous carbon to enhance the pseudocapacitance of polyaniline.
    Lei Z; Sun X; Wang H; Liu Z; Zhao XS
    ACS Appl Mater Interfaces; 2013 Aug; 5(15):7501-8. PubMed ID: 23848251
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Hierarchical heterostructures of MnO₂ nanosheets or nanorods grown on Au-coated Co₃O₄ porous nanowalls for high-performance pseudocapacitance.
    Li W; Li G; Sun J; Zou R; Xu K; Sun Y; Chen Z; Yang J; Hu J
    Nanoscale; 2013 Apr; 5(7):2901-8. PubMed ID: 23450437
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Hydrogenated CoOx nanowire@Ni(OH)2 nanosheet core-shell nanostructures for high-performance asymmetric supercapacitors.
    Zhu J; Huang L; Xiao Y; Shen L; Chen Q; Shi W
    Nanoscale; 2014 Jun; 6(12):6772-81. PubMed ID: 24828233
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Surfactant dependent self-organization of Co3O4 nanowires on Ni foam for high performance supercapacitors: from nanowire microspheres to nanowire paddy fields.
    Zhang X; Zhao Y; Xu C
    Nanoscale; 2014 Apr; 6(7):3638-46. PubMed ID: 24562602
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Insights on the fundamental capacitive behavior: a case study of MnO2.
    Yan J; Sumboja A; Wang X; Fu C; Kumar V; Lee PS
    Small; 2014 Sep; 10(17):3568-78. PubMed ID: 24510586
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Accelerating ion diffusion with unique three-dimensionally interconnected nanopores for self-membrane high-performance pseudocapacitors.
    Gao Y; Lin Y; Peng Z; Zhou Q; Fan Z
    Nanoscale; 2017 Nov; 9(46):18311-18317. PubMed ID: 29143057
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Manganese oxide/graphene aerogel composites as an outstanding supercapacitor electrode material.
    Wang CC; Chen HC; Lu SY
    Chemistry; 2014 Jan; 20(2):517-23. PubMed ID: 24327570
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Enhanced performance of layered titanate nanowire-based supercapacitor electrodes by nickel ion exchange.
    Zhou W; Liu X; Sang Y; Zhao Z; Zhou K; Liu H; Chen S
    ACS Appl Mater Interfaces; 2014 Mar; 6(6):4578-86. PubMed ID: 24593695
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Microstructural effects on charge-storage properties in MnO2-based electrochemical supercapacitors.
    Ghodbane O; Pascal JL; Favier F
    ACS Appl Mater Interfaces; 2009 May; 1(5):1130-9. PubMed ID: 20355901
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Preparation and characterization of flexible asymmetric supercapacitors based on transition-metal-oxide nanowire/single-walled carbon nanotube hybrid thin-film electrodes.
    Chen PC; Shen G; Shi Y; Chen H; Zhou C
    ACS Nano; 2010 Aug; 4(8):4403-11. PubMed ID: 20731426
    [TBL] [Abstract][Full Text] [Related]  

  • 40. 1-D structured flexible supercapacitor electrodes with prominent electronic/ionic transport capabilities.
    Kim JS; Shin SS; Han HS; Oh LS; Kim DH; Kim JH; Hong KS; Kim JY
    ACS Appl Mater Interfaces; 2014 Jan; 6(1):268-74. PubMed ID: 24397749
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.