These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 24930698)

  • 41. 1-D structured flexible supercapacitor electrodes with prominent electronic/ionic transport capabilities.
    Kim JS; Shin SS; Han HS; Oh LS; Kim DH; Kim JH; Hong KS; Kim JY
    ACS Appl Mater Interfaces; 2014 Jan; 6(1):268-74. PubMed ID: 24397749
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Ultrahigh-Power Pseudocapacitors Based on Ordered Porous Heterostructures of Electron-Correlated Oxides.
    Lang XY; Liu BT; Shi XM; Li YQ; Wen Z; Jiang Q
    Adv Sci (Weinh); 2016 May; 3(5):1500319. PubMed ID: 27812465
    [TBL] [Abstract][Full Text] [Related]  

  • 43. An entirely electrochemical preparation of a nano-structured cobalt oxide electrode with superior redox activity.
    Deng MJ; Huang FL; Sun IW; Tsai WT; Chang JK
    Nanotechnology; 2009 Apr; 20(17):175602. PubMed ID: 19420595
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Hierarchical α-MnO2 nanowires@Ni1-x Mnx Oy nanoflakes core-shell nanostructures for supercapacitors.
    Wang HY; Xiao FX; Yu L; Liu B; Lou XW
    Small; 2014 Aug; 10(15):3181-6. PubMed ID: 24711308
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Birnessite-type MnO
    Sekhar SC; Nagaraju G; Cha SM; Yu JS
    Dalton Trans; 2016 Dec; 45(48):19322-19328. PubMed ID: 27872922
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Energy-density enhancement of carbon-nanotube-based supercapacitors with redox couple in organic electrolyte.
    Park J; Kim B; Yoo YE; Chung H; Kim W
    ACS Appl Mater Interfaces; 2014 Nov; 6(22):19499-503. PubMed ID: 25425124
    [TBL] [Abstract][Full Text] [Related]  

  • 47. SrFeO
    Gupta A; Kushwaha V; Mondal R; Singh AN; Prakash R; Mandal KD; Singh P
    Phys Chem Chem Phys; 2022 May; 24(18):11066-11078. PubMed ID: 35471404
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Enhanced electrochemical performance of monoclinic WO3 thin film with redox additive aqueous electrolyte.
    Shinde PA; Lokhande VC; Chodankar NR; Ji T; Kim JH; Lokhande CD
    J Colloid Interface Sci; 2016 Dec; 483():261-267. PubMed ID: 27565957
    [TBL] [Abstract][Full Text] [Related]  

  • 49. One-Step Synthesis of Single-Layer MnO2 Nanosheets with Multi-Role Sodium Dodecyl Sulfate for High-Performance Pseudocapacitors.
    Liu Z; Xu K; Sun H; Yin S
    Small; 2015 May; 11(18):2182-91. PubMed ID: 25565035
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Nanowire templated semihollow bicontinuous graphene scrolls: designed construction, mechanism, and enhanced energy storage performance.
    Yan M; Wang F; Han C; Ma X; Xu X; An Q; Xu L; Niu C; Zhao Y; Tian X; Hu P; Wu H; Mai L
    J Am Chem Soc; 2013 Dec; 135(48):18176-82. PubMed ID: 24219156
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Porous nickel hydroxide-manganese dioxide-reduced graphene oxide ternary hybrid spheres as excellent supercapacitor electrode materials.
    Chen H; Zhou S; Wu L
    ACS Appl Mater Interfaces; 2014 Jun; 6(11):8621-30. PubMed ID: 24797315
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Poly(3,4-ethylenedioxythiophene) nanotubes as electrode materials for a high-powered supercapacitor.
    Liu R; Cho SI; Lee SB
    Nanotechnology; 2008 May; 19(21):215710. PubMed ID: 21730589
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Hierarchically structured Ni(3)S(2)/carbon nanotube composites as high performance cathode materials for asymmetric supercapacitors.
    Dai CS; Chien PY; Lin JY; Chou SW; Wu WK; Li PH; Wu KY; Lin TW
    ACS Appl Mater Interfaces; 2013 Nov; 5(22):12168-74. PubMed ID: 24191729
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Carbon nanotube/manganese oxide ultrathin film electrodes for electrochemical capacitors.
    Lee SW; Kim J; Chen S; Hammond PT; Shao-Horn Y
    ACS Nano; 2010 Jul; 4(7):3889-96. PubMed ID: 20552996
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Spinel manganese-nickel-cobalt ternary oxide nanowire array for high-performance electrochemical capacitor applications.
    Li L; Zhang Y; Shi F; Zhang Y; Zhang J; Gu C; Wang X; Tu J
    ACS Appl Mater Interfaces; 2014 Oct; 6(20):18040-7. PubMed ID: 25247606
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Effect of percolation on the capacitance of supercapacitor electrodes prepared from composites of manganese dioxide nanoplatelets and carbon nanotubes.
    Higgins TM; McAteer D; Coelho JC; Mendoza Sanchez B; Gholamvand Z; Moriarty G; McEvoy N; Berner NC; Duesberg GS; Nicolosi V; Coleman JN
    ACS Nano; 2014 Sep; 8(9):9567-79. PubMed ID: 25199042
    [TBL] [Abstract][Full Text] [Related]  

  • 57. High rate performance of flexible pseudocapacitors fabricated using ionic-liquid-based proton conducting polymer electrolyte with poly(3, 4-ethylenedioxythiophene):poly(styrene sulfonate) and its hydrous ruthenium oxide composite electrodes.
    Sellam ; Hashmi SA
    ACS Appl Mater Interfaces; 2013 May; 5(9):3875-83. PubMed ID: 23548059
    [TBL] [Abstract][Full Text] [Related]  

  • 58. CoNi(2)S(4) nanosheet arrays supported on nickel foams with ultrahigh capacitance for aqueous asymmetric supercapacitor applications.
    Hu W; Chen R; Xie W; Zou L; Qin N; Bao D
    ACS Appl Mater Interfaces; 2014 Nov; 6(21):19318-26. PubMed ID: 25322454
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Rational design of octahedron and nanowire CeO2@MnO2 core-shell heterostructures with outstanding rate capability for asymmetric supercapacitors.
    Zhu SJ; Jia JQ; Wang T; Zhao D; Yang J; Dong F; Shang ZG; Zhang YX
    Chem Commun (Camb); 2015 Oct; 51(80):14840-3. PubMed ID: 26214146
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Asymmetric carbon nanotube-MnO₂ two-ply yarn supercapacitors for wearable electronics.
    Su F; Miao M
    Nanotechnology; 2014 Apr; 25(13):135401. PubMed ID: 24583526
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.