These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
96 related articles for article (PubMed ID: 2493084)
21. A preliminary study on in vitro transmission of Dirofilaria immitis infective stage larvae by Aedes aegypti (L.) (Diptera: Culicidae). Tiawsirisup S; Khlaikhayai T; Nithiuthai S Southeast Asian J Trop Med Public Health; 2005; 36 Suppl 4():86-9. PubMed ID: 16438186 [TBL] [Abstract][Full Text] [Related]
22. Brugia malayi and Brugia pahangi: inherent difference in immune activation in the mosquitoes Armigeres subalbatus and Aedes aegypti. Beerntsen BT; Luckhart S; Christensen BM J Parasitol; 1989 Feb; 75(1):76-81. PubMed ID: 2563767 [TBL] [Abstract][Full Text] [Related]
23. Vector competence of Aedes aegypti (L.) and Culex quinquefasciatus (Say) for Dirofilaria immitis (Leidy). Tiawsirisup S; Nithiuthai S Southeast Asian J Trop Med Public Health; 2006; 37 Suppl 3():110-4. PubMed ID: 17547063 [TBL] [Abstract][Full Text] [Related]
24. Characterization of hemocytes from the yellow fever mosquito, Aedes aegypti. Hillyer JF; Christensen BM Histochem Cell Biol; 2002 May; 117(5):431-40. PubMed ID: 12029490 [TBL] [Abstract][Full Text] [Related]
25. Prophenoloxidase binds to the surface of hemocytes and is involved in hemocyte melanization in Manduca sexta. Ling E; Yu XQ Insect Biochem Mol Biol; 2005 Dec; 35(12):1356-66. PubMed ID: 16291091 [TBL] [Abstract][Full Text] [Related]
26. The role of phenylalanine hydroxylase in melanotic encapsulation of filarial worms in two species of mosquitoes. Infanger LC; Rocheleau TA; Bartholomay LC; Johnson JK; Fuchs J; Higgs S; Chen CC; Christensen BM Insect Biochem Mol Biol; 2004 Dec; 34(12):1329-38. PubMed ID: 15544946 [TBL] [Abstract][Full Text] [Related]
27. Defense reactions of mosquitoes to filarial worms: comparative studies on the response of three different mosquitoes to inoculated Brugia pahangi and Dirofilaria immitis microfilariae. Christensen BM; Sutherland DR; Gleason LN J Invertebr Pathol; 1984 Nov; 44(3):267-74. PubMed ID: 6501919 [No Abstract] [Full Text] [Related]
29. Susceptibility of Aedes aegypti to infections with Dirofilaria immitis and Dirofilaria repens. Sulaiman I Southeast Asian J Trop Med Public Health; 1983 Dec; 14(4):543-7. PubMed ID: 6673132 [TBL] [Abstract][Full Text] [Related]
30. Eicosanoids mediate prophenoloxidase release from oenocytoids in the beet armyworm Spodoptera exigua. Shrestha S; Kim Y Insect Biochem Mol Biol; 2008 Jan; 38(1):99-112. PubMed ID: 18070669 [TBL] [Abstract][Full Text] [Related]
31. Characterization of hemocytes from the mosquitoes Anopheles gambiae and Aedes aegypti. Castillo JC; Robertson AE; Strand MR Insect Biochem Mol Biol; 2006 Dec; 36(12):891-903. PubMed ID: 17098164 [TBL] [Abstract][Full Text] [Related]
32. Immune defense mechanisms of Culex quinquefasciatus (Diptera: Culicidae) against Candida albicans infection. Da Silva JB; De Albuquerque CM; De Araújo EC; Peixoto CA; Hurd H J Invertebr Pathol; 2000 Nov; 76(4):257-62. PubMed ID: 11112370 [TBL] [Abstract][Full Text] [Related]
33. Post-inoculation changes in enzyme activity of Aedes aegypti infected with Chikungunya virus. Mourya DT; Hemingway J; Leake CJ Acta Virol; 1995 Feb; 39(1):31-5. PubMed ID: 7572467 [TBL] [Abstract][Full Text] [Related]
34. A systematic study on hemocyte identification and plasma prophenoloxidase from Culex pipiens quinquefasciatus at different developmental stages. Wang Z; Lu A; Li X; Shao Q; Beerntsen BT; Liu C; Ma Y; Huang Y; Zhu H; Ling E Exp Parasitol; 2011 Jan; 127(1):135-41. PubMed ID: 20637755 [TBL] [Abstract][Full Text] [Related]
35. Further characterization of refractoriness in Aedes aegypti (L.) to infection by Dirofilaria immitis (Leidy). Nayar JK; Knight JW; Bradley TJ Exp Parasitol; 1988 Jun; 66(1):124-31. PubMed ID: 3366210 [TBL] [Abstract][Full Text] [Related]
36. Studies on the intake of microfilariae by their insect vectors, their survival, and their effect on the survival of their vectors. I. Dirofilaria immitis and Aëdes aegypti. KERSHAW WE; LAVOIPIERRE MM; CHALMERS TA Ann Trop Med Parasitol; 1953 Jun; 47(2):207-24. PubMed ID: 13080982 [No Abstract] [Full Text] [Related]
37. Role of dopachrome conversion enzyme in the melanization of filarial worms in mosquitoes. Huang CY; Christensen BM; Chen CC Insect Mol Biol; 2005 Dec; 14(6):675-82. PubMed ID: 16313567 [TBL] [Abstract][Full Text] [Related]
38. Analysis of the replication kinetics of the ChimeriVax-DEN 1, 2, 3, 4 tetravalent virus mixture in Aedes aegypti by real-time reverse transcriptase-polymerase chain reaction. Johnson BW; Chambers TV; Crabtree MB; Guirakhoo F; Monath TP; Miller BR Am J Trop Med Hyg; 2004 Jan; 70(1):89-97. PubMed ID: 14971704 [TBL] [Abstract][Full Text] [Related]
39. Molecular survey of Dirofilaria immitis and Dirofilaria repens by direct PCR for wild caught mosquitoes in the Republic of Korea. Lee SE; Kim HC; Chong ST; Klein TA; Lee WJ Vet Parasitol; 2007 Sep; 148(2):149-55. PubMed ID: 17644255 [TBL] [Abstract][Full Text] [Related]
40. The antibacterial innate immune response by the mosquito Aedes aegypti is mediated by hemocytes and independent of Gram type and pathogenicity. Hillyer JF; Schmidt SL; Christensen BM Microbes Infect; 2004 Apr; 6(5):448-59. PubMed ID: 15109959 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]