These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 24930937)

  • 41. Folate-conjugated amphiphilic star-shaped block copolymers as targeted nanocarriers.
    Zhu J; Zhou Z; Yang C; Kong D; Wan Y; Wang Z
    J Biomed Mater Res A; 2011 Jun; 97(4):498-508. PubMed ID: 21509931
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Optimization of self-assembling properties of fatty acids grafted to methoxy poly(ethylene glycol) as nanocarriers for etoposide.
    Varshosaz J; Hasanzadeh F; Eslamdoost M
    Acta Pharm; 2012 Mar; 62(1):31-44. PubMed ID: 22472447
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Curcumin-incorporated albumin nanoparticles and its tumor image.
    Gong G; Pan Q; Wang K; Wu R; Sun Y; Lu Y
    Nanotechnology; 2015 Jan; 26(4):045603. PubMed ID: 25558927
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Development of a novel biocompatible poly(ethylene glycol)-block-poly(γ-cholesterol-L-glutamate) as hydrophobic drug carrier.
    Ma Q; Li B; Yu Y; Zhang Y; Wu Y; Ren W; Zheng Y; He J; Xie Y; Song X; He G
    Int J Pharm; 2013 Mar; 445(1-2):88-92. PubMed ID: 23376505
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Balancing loading, cellular uptake, and toxicity of gelatin-pluronic nanocomposite for drug delivery: Influence of HLB of pluronic.
    Das RP; Gandhi VV; Singh BG; Kunwar A
    J Biomed Mater Res A; 2022 Feb; 110(2):304-315. PubMed ID: 34355509
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Development of disulfide core-crosslinked pluronic nanoparticles as an effective anticancer-drug-delivery system.
    Abdullah-Al-Nahain ; Lee H; Lee YS; Lee KD; Park SY
    Macromol Biosci; 2011 Sep; 11(9):1264-71. PubMed ID: 21717576
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Fabrication of self-assembled Radix Pseudostellariae protein nanoparticles and the entrapment of curcumin.
    Weng Q; Cai X; Zhang F; Wang S
    Food Chem; 2019 Feb; 274():796-802. PubMed ID: 30373011
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A 5-fluorouracil-loaded pH-responsive dendrimer nanocarrier for tumor targeting.
    Jin Y; Ren X; Wang W; Ke L; Ning E; Du L; Bradshaw J
    Int J Pharm; 2011 Nov; 420(2):378-84. PubMed ID: 21925254
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Development of chitosan/poly-γ-glutamic acid/pluronic/curcumin nanoparticles in chitosan dressings for wound regeneration.
    Lin YH; Lin JH; Hong YS
    J Biomed Mater Res B Appl Biomater; 2017 Jan; 105(1):81-90. PubMed ID: 26426455
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Fluorescence study of the curcumin-casein micelle complexation and its application as a drug nanocarrier to cancer cells.
    Sahu A; Kasoju N; Bora U
    Biomacromolecules; 2008 Oct; 9(10):2905-12. PubMed ID: 18785706
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Development and optimization of curcumin-loaded mannosylated chitosan nanoparticles using response surface methodology in the treatment of visceral leishmaniasis.
    Chaubey P; Patel RR; Mishra B
    Expert Opin Drug Deliv; 2014 Aug; 11(8):1163-81. PubMed ID: 24875148
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Enhanced anti-tumor efficacy by co-delivery of doxorubicin and paclitaxel with amphiphilic methoxy PEG-PLGA copolymer nanoparticles.
    Wang H; Zhao Y; Wu Y; Hu YL; Nan K; Nie G; Chen H
    Biomaterials; 2011 Nov; 32(32):8281-90. PubMed ID: 21807411
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Nanoformulation of paclitaxel to enhance cancer therapy.
    Gu Q; Xing JZ; Huang M; Zhang X; Chen J
    J Biomater Appl; 2013 Aug; 28(2):298-307. PubMed ID: 22561979
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Polymer micelle with pH-triggered hydrophobic-hydrophilic transition and de-cross-linking process in the core and its application for targeted anticancer drug delivery.
    Fan J; Zeng F; Wu S; Wang X
    Biomacromolecules; 2012 Dec; 13(12):4126-37. PubMed ID: 23145920
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Poly(styrene oxide)-poly(ethylene oxide) block copolymers: From "classical" chemotherapeutic nanocarriers to active cell-response inducers.
    Cambón A; Rey-Rico A; Barbosa S; Soltero JF; Yeates SG; Brea J; Loza MI; Alvarez-Lorenzo C; Concheiro A; Taboada P; Mosquera V
    J Control Release; 2013 Apr; 167(1):68-75. PubMed ID: 23352909
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Phyto-cosmeceutical gel containing curcumin and quercetin loaded mixed micelles for improved anti-oxidant and photoprotective activity.
    Rao MR; Gaikwad P; Misal P; Gandhi SV
    Colloids Surf B Biointerfaces; 2024 May; 237():113837. PubMed ID: 38508086
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Curcumin-encapsulated MePEG/PCL diblock copolymeric micelles: a novel controlled delivery vehicle for cancer therapy.
    Mohanty C; Acharya S; Mohanty AK; Dilnawaz F; Sahoo SK
    Nanomedicine (Lond); 2010 Apr; 5(3):433-49. PubMed ID: 20394536
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Folate-mediated chondroitin sulfate-Pluronic 127 nanogels as a drug carrier.
    Huang SJ; Sun SL; Feng TH; Sung KH; Lui WL; Wang LF
    Eur J Pharm Sci; 2009 Aug; 38(1):64-73. PubMed ID: 19540339
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Layer-by-layer engineered nanocapsules of curcumin with improved cell activity.
    Kittitheeranun P; Sajomsang W; Phanpee S; Treetong A; Wutikhun T; Suktham K; Puttipipatkhachorn S; Ruktanonchai UR
    Int J Pharm; 2015 Aug; 492(1-2):92-102. PubMed ID: 26143232
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Self-assembled stimuli-responsive polyrotaxane core-shell particles.
    Tardy BL; Dam HH; Kamphuis MM; Richardson JJ; Caruso F
    Biomacromolecules; 2014 Jan; 15(1):53-9. PubMed ID: 24328262
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.