These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

822 related articles for article (PubMed ID: 24930952)

  • 1. Mass spectrometry and redox proteomics: applications in disease.
    Butterfield DA; Gu L; Di Domenico F; Robinson RA
    Mass Spectrom Rev; 2014; 33(4):277-301. PubMed ID: 24930952
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Redox proteomics: from bench to bedside.
    Ckless K
    Adv Exp Med Biol; 2014; 806():301-17. PubMed ID: 24952188
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Redox Proteomes in Human Physiology and Disease Mechanisms.
    Mannaa A; Hanisch FG
    J Proteome Res; 2020 Jan; 19(1):1-17. PubMed ID: 31647248
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Redox proteomics: Methods for the identification and enrichment of redox-modified proteins and their applications.
    Lennicke C; Rahn J; Heimer N; Lichtenfels R; Wessjohann LA; Seliger B
    Proteomics; 2016 Jan; 16(2):197-213. PubMed ID: 26508685
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proteomics identification of oxidatively modified proteins in brain.
    Sultana R; Perluigi M; Butterfield DA
    Methods Mol Biol; 2009; 564():291-301. PubMed ID: 19544029
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plant redox proteomics.
    Navrot N; Finnie C; Svensson B; Hägglund P
    J Proteomics; 2011 Aug; 74(8):1450-62. PubMed ID: 21406256
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Redox proteomics in selected neurodegenerative disorders: from its infancy to future applications.
    Butterfield DA; Perluigi M; Reed T; Muharib T; Hughes CP; Robinson RA; Sultana R
    Antioxid Redox Signal; 2012 Dec; 17(11):1610-55. PubMed ID: 22115501
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ROS and RNS signalling: adaptive redox switches through oxidative/nitrosative protein modifications.
    Moldogazieva NT; Mokhosoev IM; Feldman NB; Lutsenko SV
    Free Radic Res; 2018 May; 52(5):507-543. PubMed ID: 29589770
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proteomic approaches to quantify cysteine reversible modifications in aging and neurodegenerative diseases.
    Gu L; Robinson RA
    Proteomics Clin Appl; 2016 Dec; 10(12):1159-1177. PubMed ID: 27666938
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Free radicals, metals and antioxidants in oxidative stress-induced cancer.
    Valko M; Rhodes CJ; Moncol J; Izakovic M; Mazur M
    Chem Biol Interact; 2006 Mar; 160(1):1-40. PubMed ID: 16430879
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxidative stress in the aging murine olfactory bulb: redox proteomics and cellular localization.
    Vaishnav RA; Getchell ML; Poon HF; Barnett KR; Hunter SA; Pierce WM; Klein JB; Butterfield DA; Getchell TV
    J Neurosci Res; 2007 Feb; 85(2):373-85. PubMed ID: 17131389
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thiol-based redox proteomics in cancer research.
    Yuan K; Liu Y; Chen HN; Zhang L; Lan J; Gao W; Dou Q; Nice EC; Huang C
    Proteomics; 2015 Jan; 15(2-3):287-99. PubMed ID: 25251260
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proteomics identification of carbonylated and HNE-bound brain proteins in Alzheimer's disease.
    Sultana R; Butterfield DA
    Methods Mol Biol; 2009; 566():123-35. PubMed ID: 20058169
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detection of 4-hydroxy-2-nonenal- and 3-nitrotyrosine-modified proteins using a proteomics approach.
    Sultana R; Reed T; Butterfield DA
    Methods Mol Biol; 2009; 519():351-61. PubMed ID: 19381594
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ROSics: chemistry and proteomics of cysteine modifications in redox biology.
    Kim HJ; Ha S; Lee HY; Lee KJ
    Mass Spectrom Rev; 2015; 34(2):184-208. PubMed ID: 24916017
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analytical approaches to the diagnosis and treatment of aging and aging-related disease: redox status and proteomics.
    Calabrese V; Dattilo S; Petralia A; Parenti R; Pennisi M; Koverech G; Calabrese V; Graziano A; Monte I; Maiolino L; Ferreri T; Calabrese EJ
    Free Radic Res; 2015 May; 49(5):511-24. PubMed ID: 25824967
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proteomic detection of nitroproteins as potential biomarkers for cardiovascular disease.
    Aslan M; Dogan S
    J Proteomics; 2011 Oct; 74(11):2274-88. PubMed ID: 21640858
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nonenzymatic post-translational modifications in peptides by cold plasma-derived reactive oxygen and nitrogen species.
    Wenske S; Lackmann JW; Bekeschus S; Weltmann KD; von Woedtke T; Wende K
    Biointerphases; 2020 Nov; 15(6):061008. PubMed ID: 33238712
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hallmarks of protein oxidative damage in neurodegenerative diseases: focus on Alzheimer's disease.
    Polidori MC; Griffiths HR; Mariani E; Mecocci P
    Amino Acids; 2007; 32(4):553-9. PubMed ID: 17273806
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gel-free proteomic methodologies to study reversible cysteine oxidation and irreversible protein carbonyl formation.
    Boronat S; García-Santamarina S; Hidalgo E
    Free Radic Res; 2015 May; 49(5):494-510. PubMed ID: 25782062
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 42.