BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

811 related articles for article (PubMed ID: 24930952)

  • 1. Mass spectrometry and redox proteomics: applications in disease.
    Butterfield DA; Gu L; Di Domenico F; Robinson RA
    Mass Spectrom Rev; 2014; 33(4):277-301. PubMed ID: 24930952
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Redox proteomics: from bench to bedside.
    Ckless K
    Adv Exp Med Biol; 2014; 806():301-17. PubMed ID: 24952188
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Redox Proteomes in Human Physiology and Disease Mechanisms.
    Mannaa A; Hanisch FG
    J Proteome Res; 2020 Jan; 19(1):1-17. PubMed ID: 31647248
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Redox proteomics: Methods for the identification and enrichment of redox-modified proteins and their applications.
    Lennicke C; Rahn J; Heimer N; Lichtenfels R; Wessjohann LA; Seliger B
    Proteomics; 2016 Jan; 16(2):197-213. PubMed ID: 26508685
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proteomics identification of oxidatively modified proteins in brain.
    Sultana R; Perluigi M; Butterfield DA
    Methods Mol Biol; 2009; 564():291-301. PubMed ID: 19544029
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plant redox proteomics.
    Navrot N; Finnie C; Svensson B; Hägglund P
    J Proteomics; 2011 Aug; 74(8):1450-62. PubMed ID: 21406256
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Redox proteomics in selected neurodegenerative disorders: from its infancy to future applications.
    Butterfield DA; Perluigi M; Reed T; Muharib T; Hughes CP; Robinson RA; Sultana R
    Antioxid Redox Signal; 2012 Dec; 17(11):1610-55. PubMed ID: 22115501
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ROS and RNS signalling: adaptive redox switches through oxidative/nitrosative protein modifications.
    Moldogazieva NT; Mokhosoev IM; Feldman NB; Lutsenko SV
    Free Radic Res; 2018 May; 52(5):507-543. PubMed ID: 29589770
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proteomic approaches to quantify cysteine reversible modifications in aging and neurodegenerative diseases.
    Gu L; Robinson RA
    Proteomics Clin Appl; 2016 Dec; 10(12):1159-1177. PubMed ID: 27666938
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Free radicals, metals and antioxidants in oxidative stress-induced cancer.
    Valko M; Rhodes CJ; Moncol J; Izakovic M; Mazur M
    Chem Biol Interact; 2006 Mar; 160(1):1-40. PubMed ID: 16430879
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxidative stress in the aging murine olfactory bulb: redox proteomics and cellular localization.
    Vaishnav RA; Getchell ML; Poon HF; Barnett KR; Hunter SA; Pierce WM; Klein JB; Butterfield DA; Getchell TV
    J Neurosci Res; 2007 Feb; 85(2):373-85. PubMed ID: 17131389
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thiol-based redox proteomics in cancer research.
    Yuan K; Liu Y; Chen HN; Zhang L; Lan J; Gao W; Dou Q; Nice EC; Huang C
    Proteomics; 2015 Jan; 15(2-3):287-99. PubMed ID: 25251260
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proteomics identification of carbonylated and HNE-bound brain proteins in Alzheimer's disease.
    Sultana R; Butterfield DA
    Methods Mol Biol; 2009; 566():123-35. PubMed ID: 20058169
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detection of 4-hydroxy-2-nonenal- and 3-nitrotyrosine-modified proteins using a proteomics approach.
    Sultana R; Reed T; Butterfield DA
    Methods Mol Biol; 2009; 519():351-61. PubMed ID: 19381594
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ROSics: chemistry and proteomics of cysteine modifications in redox biology.
    Kim HJ; Ha S; Lee HY; Lee KJ
    Mass Spectrom Rev; 2015; 34(2):184-208. PubMed ID: 24916017
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analytical approaches to the diagnosis and treatment of aging and aging-related disease: redox status and proteomics.
    Calabrese V; Dattilo S; Petralia A; Parenti R; Pennisi M; Koverech G; Calabrese V; Graziano A; Monte I; Maiolino L; Ferreri T; Calabrese EJ
    Free Radic Res; 2015 May; 49(5):511-24. PubMed ID: 25824967
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proteomic detection of nitroproteins as potential biomarkers for cardiovascular disease.
    Aslan M; Dogan S
    J Proteomics; 2011 Oct; 74(11):2274-88. PubMed ID: 21640858
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nonenzymatic post-translational modifications in peptides by cold plasma-derived reactive oxygen and nitrogen species.
    Wenske S; Lackmann JW; Bekeschus S; Weltmann KD; von Woedtke T; Wende K
    Biointerphases; 2020 Nov; 15(6):061008. PubMed ID: 33238712
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hallmarks of protein oxidative damage in neurodegenerative diseases: focus on Alzheimer's disease.
    Polidori MC; Griffiths HR; Mariani E; Mecocci P
    Amino Acids; 2007; 32(4):553-9. PubMed ID: 17273806
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gel-free proteomic methodologies to study reversible cysteine oxidation and irreversible protein carbonyl formation.
    Boronat S; García-Santamarina S; Hidalgo E
    Free Radic Res; 2015 May; 49(5):494-510. PubMed ID: 25782062
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 41.