These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
212 related articles for article (PubMed ID: 24930990)
1. Anticandidal activity of silver nanoparticles synthesized using Streptomyces sp.VITPK1. Sanjenbam P; Gopal JV; Kannabiran K J Mycol Med; 2014 Sep; 24(3):211-9. PubMed ID: 24930990 [TBL] [Abstract][Full Text] [Related]
2. Antifungal activity of Streptomyces sp. VITSTK7 and its synthesized Ag2O/Ag nanoparticles against medically important Aspergillus pathogens. Thenmozhi M; Kannabiran K; Kumar R; Gopiesh Khanna V J Mycol Med; 2013 Jun; 23(2):97-103. PubMed ID: 23706303 [TBL] [Abstract][Full Text] [Related]
3. Acidophilic actinobacteria synthesised silver nanoparticles showed remarkable activity against fungi-causing superficial mycoses in humans. Anasane N; Golińska P; Wypij M; Rathod D; Dahm H; Rai M Mycoses; 2016 Mar; 59(3):157-66. PubMed ID: 26671603 [TBL] [Abstract][Full Text] [Related]
4. Pleurotus sajor-caju can be used to synthesize silver nanoparticles with antifungal activity against Candida albicans. Musa SF; Yeat TS; Kamal LZM; Tabana YM; Ahmed MA; El Ouweini A; Lim V; Keong LC; Sandai D J Sci Food Agric; 2018 Feb; 98(3):1197-1207. PubMed ID: 28746729 [TBL] [Abstract][Full Text] [Related]
5. Silver/silver chloride (Ag/AgCl) nanoparticles synthesized from Al Aboody MS Artif Cells Nanomed Biotechnol; 2019 Dec; 47(1):2107-2113. PubMed ID: 31137983 [TBL] [Abstract][Full Text] [Related]
6. Silver nanoparticles embedded mesoporous SiO₂ nanosphere: an effective anticandidal agent against Candida albicans 077. Qasim M; Singh BR; Naqvi AH; Paik P; Das D Nanotechnology; 2015 Jul; 26(28):285102. PubMed ID: 26119911 [TBL] [Abstract][Full Text] [Related]
7. Antifungal activity of silver nanoparticles obtained by green synthesis. Mallmann EJ; Cunha FA; Castro BN; Maciel AM; Menezes EA; Fechine PB Rev Inst Med Trop Sao Paulo; 2015; 57(2):165-7. PubMed ID: 25923897 [TBL] [Abstract][Full Text] [Related]
8. Phyto-mediated biosynthesis of silver nanoparticles using the rind extract of watermelon (Citrullus lanatus) under photo-catalyzed condition and investigation of its antibacterial, anticandidal and antioxidant efficacy. Patra JK; Das G; Baek KH J Photochem Photobiol B; 2016 Aug; 161():200-10. PubMed ID: 27261701 [TBL] [Abstract][Full Text] [Related]
9. Extracellular biosynthesis of anti-Candida silver nanoparticles using Monascus purpureus. El-Baz AF; El-Batal AI; Abomosalam FM; Tayel AA; Shetaia YM; Yang ST J Basic Microbiol; 2016 May; 56(5):531-40. PubMed ID: 26515502 [TBL] [Abstract][Full Text] [Related]
10. Mode of action and anti-Candida activity of Artemisia annua mediated-synthesized silver nanoparticles. Khatoon N; Sharma Y; Sardar M; Manzoor N J Mycol Med; 2019 Sep; 29(3):201-209. PubMed ID: 31378442 [TBL] [Abstract][Full Text] [Related]
11. Biosynthesis of silver nanoparticles by Streptomyces hygroscopicus and antimicrobial activity against medically important pathogenic microorganisms. Sadhasivam S; Shanmugam P; Yun K Colloids Surf B Biointerfaces; 2010 Nov; 81(1):358-62. PubMed ID: 20705438 [TBL] [Abstract][Full Text] [Related]
13. Mangrove Streptomyces sp. BDUKAS10 as nanofactory for fabrication of bactericidal silver nanoparticles. Sivalingam P; Antony JJ; Siva D; Achiraman S; Anbarasu K Colloids Surf B Biointerfaces; 2012 Oct; 98():12-7. PubMed ID: 22652354 [TBL] [Abstract][Full Text] [Related]
14. Biosynthesis of silver nanoparticles by Novosphingobium sp. THG-C3 and their antimicrobial potential. Du J; Singh H; Yi TH Artif Cells Nanomed Biotechnol; 2017 Mar; 45(2):211-217. PubMed ID: 27145847 [TBL] [Abstract][Full Text] [Related]
15. Amphotericin B-conjugated biogenic silver nanoparticles as an innovative strategy for fungal infections. Ahmad A; Wei Y; Syed F; Tahir K; Taj R; Khan AU; Hameed MU; Yuan Q Microb Pathog; 2016 Oct; 99():271-281. PubMed ID: 27591110 [TBL] [Abstract][Full Text] [Related]
16. Antimicrobial and cytotoxic activity of silver nanoparticles synthesized from two haloalkaliphilic actinobacterial strains alone and in combination with antibiotics. Wypij M; Świecimska M; Czarnecka J; Dahm H; Rai M; Golinska P J Appl Microbiol; 2018 Jun; 124(6):1411-1424. PubMed ID: 29427473 [TBL] [Abstract][Full Text] [Related]
17. Kinneretia THG-SQI4 mediated biosynthesis of silver nanoparticles and its antimicrobial efficacy. Singh H; Du J; Yi TH Artif Cells Nanomed Biotechnol; 2017 May; 45(3):602-608. PubMed ID: 28211298 [TBL] [Abstract][Full Text] [Related]
18. A sunlight-induced rapid synthesis of silver nanoparticles using sodium salt of N-cholyl amino acids and its antimicrobial applications. Annadhasan M; SankarBabu VR; Naresh R; Umamaheswari K; Rajendiran N Colloids Surf B Biointerfaces; 2012 Aug; 96():14-21. PubMed ID: 22537720 [TBL] [Abstract][Full Text] [Related]
19. Anticandidal activity of biosynthesized silver nanoparticles: effect on growth, cell morphology, and key virulence attributes of Candida species. Jalal M; Ansari MA; Alzohairy MA; Ali SG; Khan HM; Almatroudi A; Siddiqui MI Int J Nanomedicine; 2019; 14():4667-4679. PubMed ID: 31308652 [No Abstract] [Full Text] [Related]
20. Biosynthesis, characterization and antimicrobial activity of silver nanoparticles by Streptomyces sp. SS2. Mohanta YK; Behera SK Bioprocess Biosyst Eng; 2014 Nov; 37(11):2263-9. PubMed ID: 24842223 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]