These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
149 related articles for article (PubMed ID: 24931036)
1. Rechargeable batteries with high energy storage activated by in-situ induced fluorination of carbon nanotube cathode. Cui X; Chen J; Wang T; Chen W Sci Rep; 2014 Jun; 4():5310. PubMed ID: 24931036 [TBL] [Abstract][Full Text] [Related]
2. Binder-Free V Diem AM; Fenk B; Bill J; Burghard Z Nanomaterials (Basel); 2020 Jan; 10(2):. PubMed ID: 32019197 [TBL] [Abstract][Full Text] [Related]
3. Fluorinated Carbons as Rechargeable Li-Ion Battery Cathodes in the Voltage Window of 0.5-4.8 V. Chen P; Jiang C; Jiang J; Zou J; Ran Q; Wang X; Niu X; Wang L ACS Appl Mater Interfaces; 2021 Jul; 13(26):30576-30582. PubMed ID: 34165960 [TBL] [Abstract][Full Text] [Related]
4. Design and Reaction Mechanism of Rechargeable Lithium-Carbon Fluoride Battery. Su W; Wang D; Li Y; Mao H; Wei B; Xu S; Lu S; Guo B; Lyu Y ACS Nano; 2024 Sep; 18(35):24541-24549. PubMed ID: 39163343 [TBL] [Abstract][Full Text] [Related]
5. Rechargeable Lithium-Iodine Batteries with Iodine/Nanoporous Carbon Cathode. Zhao Q; Lu Y; Zhu Z; Tao Z; Chen J Nano Lett; 2015 Sep; 15(9):5982-7. PubMed ID: 26241461 [TBL] [Abstract][Full Text] [Related]
6. Naphthoquinone-Based Composite Cathodes for Aqueous Rechargeable Zinc-Ion Batteries. Kumankuma-Sarpong J; Tang S; Guo W; Fu Y ACS Appl Mater Interfaces; 2021 Jan; 13(3):4084-4092. PubMed ID: 33459008 [TBL] [Abstract][Full Text] [Related]
7. Organosulfides: An Emerging Class of Cathode Materials for Rechargeable Lithium Batteries. Wang DY; Guo W; Fu Y Acc Chem Res; 2019 Aug; 52(8):2290-2300. PubMed ID: 31386341 [TBL] [Abstract][Full Text] [Related]
8. Cuprous Self-Doping Regulated Mesoporous CuS Nanotube Cathode Materials for Rechargeable Magnesium Batteries. Du C; Zhu Y; Wang Z; Wang L; Younas W; Ma X; Cao C ACS Appl Mater Interfaces; 2020 Aug; 12(31):35035-35042. PubMed ID: 32667190 [TBL] [Abstract][Full Text] [Related]
9. New nanostructured Li2S/silicon rechargeable battery with high specific energy. Yang Y; McDowell MT; Jackson A; Cha JJ; Hong SS; Cui Y Nano Lett; 2010 Apr; 10(4):1486-91. PubMed ID: 20184382 [TBL] [Abstract][Full Text] [Related]
10. The Li-ion rechargeable battery: a perspective. Goodenough JB; Park KS J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028 [TBL] [Abstract][Full Text] [Related]
11. A Pyrite Iron Disulfide Cathode with a Copper Current Collector for High-Energy Reversible Magnesium-Ion Storage. Shen Y; Zhang Q; Wang Y; Gu L; Zhao X; Shen X Adv Mater; 2021 Oct; 33(41):e2103881. PubMed ID: 34436798 [TBL] [Abstract][Full Text] [Related]
12. Reversible Electrochemical Energy Storage Based on Zinc-Halide Chemistry. Ejigu A; Le Fevre LW; Dryfe RAW ACS Appl Mater Interfaces; 2021 Mar; 13(12):14112-14121. PubMed ID: 33724772 [TBL] [Abstract][Full Text] [Related]
13. Challenges and prospects of lithium-sulfur batteries. Manthiram A; Fu Y; Su YS Acc Chem Res; 2013 May; 46(5):1125-34. PubMed ID: 23095063 [TBL] [Abstract][Full Text] [Related]
14. High-voltage and long-lasting aqueous chlorine-ion battery by virtue of "water-in-salt" electrolyte. Li T; Li M; Li H; Zhao H iScience; 2021 Jan; 24(1):101976. PubMed ID: 33458621 [TBL] [Abstract][Full Text] [Related]
15. High-Energy Density Li-O Lee H; Lee DJ; Kim M; Kim H; Cho YS; Kwon HJ; Lee HC; Park CR; Im D ACS Appl Mater Interfaces; 2020 Apr; 12(15):17385-17395. PubMed ID: 32212667 [TBL] [Abstract][Full Text] [Related]
16. The Conversion Chemistry for High-Energy Cathodes of Rechargeable Sodium Batteries. Lee Y; Yoo JK; Jo JH; Park H; Jo CH; Ko W; Yashiro H; Myung ST; Kim J ACS Nano; 2019 Oct; 13(10):11707-11716. PubMed ID: 31600049 [TBL] [Abstract][Full Text] [Related]
17. In situ formed lithium sulfide/microporous carbon cathodes for lithium-ion batteries. Zheng S; Chen Y; Xu Y; Yi F; Zhu Y; Liu Y; Yang J; Wang C ACS Nano; 2013 Dec; 7(12):10995-1003. PubMed ID: 24251957 [TBL] [Abstract][Full Text] [Related]
18. Hierarchical Porous Nickel Cobaltate Nanoneedle Arrays as Flexible Carbon-Protected Cathodes for High-Performance Lithium-Oxygen Batteries. Xue H; Wu S; Tang J; Gong H; He P; He J; Zhou H ACS Appl Mater Interfaces; 2016 Apr; 8(13):8427-35. PubMed ID: 26967936 [TBL] [Abstract][Full Text] [Related]
19. Electrochemically Activated Nickel-Carbon Composite as Ultrastable Cathodes for Rechargeable Nickel-Zinc Batteries. Meng L; Lin D; Wang J; Zeng Y; Liu Y; Lu X ACS Appl Mater Interfaces; 2019 Apr; 11(16):14854-14861. PubMed ID: 30938148 [TBL] [Abstract][Full Text] [Related]
20. Facile in Situ Preparation of Graphitic-C₃N₄@carbon Paper As an Efficient Metal-Free Cathode for Nonaqueous Li-O₂ Battery. Yi J; Liao K; Zhang C; Zhang T; Li F; Zhou H ACS Appl Mater Interfaces; 2015 May; 7(20):10823-7. PubMed ID: 25901759 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]