These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 2493108)

  • 1. Enhanced high energy phosphate recovery with ribose infusion after global myocardial ischemia in a canine model.
    St Cyr JA; Bianco RW; Schneider JR; Mahoney JR; Tveter K; Einzig S; Foker JE
    J Surg Res; 1989 Feb; 46(2):157-62. PubMed ID: 2493108
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Long term model for evaluation of myocardial metabolic recovery following global ischemia.
    St Cyr J; Ward H; Kriett J; Alyono D; Einzig S; Bianco R; Anderson R; Foker J
    Adv Exp Med Biol; 1986; 194():401-14. PubMed ID: 3529869
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recovery of adenine nucleotide levels after global myocardial ischemia in dogs.
    Ward HB; St Cyr JA; Cogordan JA; Alyono D; Bianco RW; Kriett JM; Foker JE
    Surgery; 1984 Aug; 96(2):248-55. PubMed ID: 6431623
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prevention of ATP catabolism during myocardial ischemia: a preliminary report.
    Ward HB; Wang T; Einzig S; Bianco RW; Foker JE
    J Surg Res; 1983 Apr; 34(4):292-7. PubMed ID: 6834814
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Is adenosine 5'-triphosphate derangement or free-radical-mediated injury the major cause of ventricular dysfunction during reperfusion? Role of adenine nucleoside transport in myocardial reperfusion injury.
    Abd-Elfattah AS; Jessen ME; Hanan SA; Tuchy G; Wechsler AS
    Circulation; 1990 Nov; 82(5 Suppl):IV341-50. PubMed ID: 2225426
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolic intervention to affect myocardial recovery following ischemia.
    Pasque MK; Wechsler AS
    Ann Surg; 1984 Jul; 200(1):1-12. PubMed ID: 6428332
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of ribose, adenosine, and "AICAR" on the rate of myocardial adenosine triphosphate synthesis during reperfusion after coronary artery occlusion in the dog.
    Mauser M; Hoffmeister HM; Nienaber C; Schaper W
    Circ Res; 1985 Feb; 56(2):220-30. PubMed ID: 3918804
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Myocardial reperfusion injury. Role of myocardial hypoxanthine and xanthine in free radical-mediated reperfusion injury.
    Abd-Elfattah AS; Jessen ME; Lekven J; Doherty NE; Brunsting LA; Wechsler AS
    Circulation; 1988 Nov; 78(5 Pt 2):III224-35. PubMed ID: 3180402
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reduction of postischemic myocardial dysfunction by substrate repletion during reperfusion.
    Haas GS; DeBoer LW; O'Keefe DD; Bodenhamer RM; Geffin GA; Drop LJ; Teplick RS; Daggett WM
    Circulation; 1984 Sep; 70(3 Pt 2):I65-74. PubMed ID: 6430593
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ribose accelerates the repletion of the ATP pool during recovery from reversible ischemia of the rat myocardium.
    Zimmer HG; Ibel H
    J Mol Cell Cardiol; 1984 Sep; 16(9):863-6. PubMed ID: 6436498
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alterations in the distribution of high-energy phosphates during ischemia in a canine model of reperfusion-induced ventricular fibrillation.
    Hale SL; Alker KJ; Lo HM; Ingwall JS; Kloner RA
    Am Heart J; 1985 Sep; 110(3):590-4. PubMed ID: 4036784
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of lactate infusion on myocardial metabolism and ventricular function following ischemia and cardioplegia.
    Teoh KH; Mickle DA; Weisel RD; Madonik MM; Ivanov J; Harding RD; Romaschin AD; Wilson GJ; Mullen JC
    Can J Cardiol; 1990; 6(1):38-46. PubMed ID: 2310994
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ribose-enhanced myocardial recovery following ischemia in the isolated working rat heart.
    Pasque MK; Spray TL; Pellom GL; Van Trigt P; Peyton RB; Currie WD; Wechsler AS
    J Thorac Cardiovasc Surg; 1982 Mar; 83(3):390-8. PubMed ID: 6174831
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced postischemic ATP repletion by pharmacological inhibition of nucleoside washout and catabolism.
    Henrichs KJ; Matsuoka H; Schaper W
    J Cardiovasc Pharmacol; 1988 Jun; 11(6):694-700. PubMed ID: 2457765
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lack of involvement of thromboxane A2 in postischemic recovery of stunned canine myocardium.
    Farber NE; Pieper GM; Gross GJ
    Circulation; 1988 Aug; 78(2):450-61. PubMed ID: 3396181
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Effects of dichloroacetate in the ischemic heart. Analysis of hemodynamics, myocardial energy metabolism and myocardial pH].
    Mizushima M
    Hokkaido Igaku Zasshi; 1990 May; 65(3):298-310. PubMed ID: 2379912
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preservation of high-energy phosphates by verapamil in reperfused myocardium.
    Lange R; Ingwall J; Hale SL; Alker KJ; Braunwald E; Kloner RA
    Circulation; 1984 Oct; 70(4):734-41. PubMed ID: 6478571
    [TBL] [Abstract][Full Text] [Related]  

  • 18. L-propionylcarnitine increases postischemic blood flow but does not affect recovery of energy charge.
    Sassen LM; Bezstarosti K; Van der Giessen WJ; Lamers JM; Verdouw PD
    Am J Physiol; 1991 Jul; 261(1 Pt 2):H172-80. PubMed ID: 1858918
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The efficacy of blood versus crystalloid coronary sinus cardioplegia during global myocardial ischemia.
    Goldstein JP; Salter DR; Murphy CE; Abd-Elfattah AS; Morris JJ; Wechsler AS
    Circulation; 1986 Nov; 74(5 Pt 2):III99-104. PubMed ID: 3769191
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of recurrent ischemia on myocardial high energy phosphate content in canine hearts.
    Lange R; Ingwall JS; Hale SL; Alker KJ; Kloner RA
    Basic Res Cardiol; 1984; 79(4):469-78. PubMed ID: 6487240
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.