These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 24931535)

  • 21. Sorption of linear alkylbenzene sulfonate to soil components and effects on microbial iron reduction.
    Kristiansen IB; de Jonge H; Nørnberg P; Mather-Christensen O; Elsgaard L
    Environ Toxicol Chem; 2003 Jun; 22(6):1221-8. PubMed ID: 12785577
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Impact of microbial iron oxide reduction on the transport of diffusible tracers and non-diffusible nanoparticles in soils.
    Liang X; Radosevich M; Löffler F; Schaeffer SM; Zhuang J
    Chemosphere; 2019 Apr; 220():391-402. PubMed ID: 30597359
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Vivianite precipitation and phosphate sorption following iron reduction in anoxic soils.
    Heiberg L; Koch CB; Kjaergaard C; Jensen HS; Hans Christian BH
    J Environ Qual; 2012; 41(3):938-49. PubMed ID: 22565275
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cadmium solubility in paddy soils: effects of soil oxidation, metal sulfides and competitive ions.
    de Livera J; McLaughlin MJ; Hettiarachchi GM; Kirby JK; Beak DG
    Sci Total Environ; 2011 Mar; 409(8):1489-97. PubMed ID: 21277005
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Microbial reduction of Fe(III) and turnover of acetate in Hawaiian soils.
    Küsel K; Wagner C; Trinkwalter T; Gössner AS; Bäumler R; Drake HL
    FEMS Microbiol Ecol; 2002 Apr; 40(1):73-81. PubMed ID: 19709213
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of iron(III) reduction on organic carbon decomposition in two paddy soils under flooding conditions.
    Sun Z; Qian X; Shaaban M; Wu L; Hu J; Hu R
    Environ Sci Pollut Res Int; 2019 Apr; 26(12):12481-12490. PubMed ID: 30850984
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Pedogenesis, geochemical forms of heavy metals, and artifact weathering in an urban soil chronosequence, Detroit, Michigan.
    Howard JL; Olszewska D
    Environ Pollut; 2011 Mar; 159(3):754-61. PubMed ID: 21183263
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Iron and arsenic release from aquifer solids in response to biostimulation.
    McLean JE; Dupont RR; Sorensen DL
    J Environ Qual; 2006; 35(4):1193-203. PubMed ID: 16825439
    [TBL] [Abstract][Full Text] [Related]  

  • 29. N2O production pathways in the subtropical acid forest soils in China.
    Zhang J; Cai Z; Zhu T
    Environ Res; 2011 Jul; 111(5):643-9. PubMed ID: 21550605
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Abundance and community succession of nitrogen-fixing bacteria in ferrihydrite enriched cultures of paddy soils is closely related to Fe(III)-reduction.
    Jia R; Wang K; Li L; Qu Z; Shen W; Qu D
    Sci Total Environ; 2020 Jun; 720():137633. PubMed ID: 32146407
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Geographical pattern of methanogenesis in paddy and wetland soils across eastern China.
    Hao X; Jiao S; Lu Y
    Sci Total Environ; 2019 Feb; 651(Pt 1):281-290. PubMed ID: 30243161
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of ferric iron reduction and regeneration on nitrous oxide and methane emissions in a rice soil.
    Huang B; Yu K; Gambrell RP
    Chemosphere; 2009 Jan; 74(4):481-6. PubMed ID: 19027141
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Competition of Fe(III) reduction and methanogenesis in an acidic fen.
    Reiche M; Torburg G; Küsel K
    FEMS Microbiol Ecol; 2008 Jul; 65(1):88-101. PubMed ID: 18559015
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Potential for microbially mediated redox transformations and mobilization of arsenic in uncontaminated soils.
    Yamamura S; Watanabe M; Yamamoto N; Sei K; Ike M
    Chemosphere; 2009 Sep; 77(2):169-74. PubMed ID: 19716583
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Influence of soil geochemical and physical properties on chromium(VI) sorption and bioaccessibility.
    Jardine PM; Stewart MA; Barnett MO; Basta NT; Brooks SC; Fendorf S; Mehlhorn TL
    Environ Sci Technol; 2013 Oct; 47(19):11241-8. PubMed ID: 23941581
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The influence of water-soluble As(III) and As(V) on dehydrogenase activity in soils affected by mine tailings.
    Fernández P; Sommer I; Cram S; Rosas I; Gutiérrez M
    Sci Total Environ; 2005 Sep; 348(1-3):231-43. PubMed ID: 16162327
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Aggregation-dependent electron transfer via redox-active biochar particles stimulate microbial ferrihydrite reduction.
    Yang Z; Sun T; Subdiaga E; Obst M; Haderlein SB; Maisch M; Kretzschmar R; Angenent LT; Kappler A
    Sci Total Environ; 2020 Feb; 703():135515. PubMed ID: 31761354
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Rapid Iron Reduction Rates Are Stimulated by High-Amplitude Redox Fluctuations in a Tropical Forest Soil.
    Ginn B; Meile C; Wilmoth J; Tang Y; Thompson A
    Environ Sci Technol; 2017 Mar; 51(6):3250-3259. PubMed ID: 28244747
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Occurrence and rates of terminal electron-accepting processes and recharge processes in petroleum hydrocarbon-contaminated subsurface.
    Salminen JM; Hänninen PJ; Leveinen J; Lintinen PT; Jørgensen KS
    J Environ Qual; 2006; 35(6):2273-82. PubMed ID: 17071898
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nitrogen loss through anaerobic ammonium oxidation coupled to iron reduction from paddy soils in a chronosequence.
    Ding LJ; An XL; Li S; Zhang GL; Zhu YG
    Environ Sci Technol; 2014 Sep; 48(18):10641-7. PubMed ID: 25158120
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.