BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 24931575)

  • 1. NiSb alloy hollow nanospheres as anode materials for rechargeable lithium ion batteries.
    Hou H; Cao X; Yang Y; Fang L; Pan C; Yang X; Song W; Ji X
    Chem Commun (Camb); 2014 Aug; 50(60):8201-3. PubMed ID: 24931575
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sodium/Lithium storage behavior of antimony hollow nanospheres for rechargeable batteries.
    Hou H; Jing M; Yang Y; Zhu Y; Fang L; Song W; Pan C; Yang X; Ji X
    ACS Appl Mater Interfaces; 2014 Sep; 6(18):16189-96. PubMed ID: 25140456
    [TBL] [Abstract][Full Text] [Related]  

  • 3. NiSb/nitrogen-doped carbon derived from Ni-based framework as advanced anode for lithium-ion batteries.
    Su M; Li J; He K; Fu K; Nui P; Chen Y; Zhou Y; Dou A; Hou X; Liu Y
    J Colloid Interface Sci; 2023 Jan; 629(Pt A):83-91. PubMed ID: 36054991
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metal-Organic Framework-Derived NiSb Alloy Embedded in Carbon Hollow Spheres as Superior Lithium-Ion Battery Anodes.
    Yu L; Liu J; Xu X; Zhang L; Hu R; Liu J; Yang L; Zhu M
    ACS Appl Mater Interfaces; 2017 Jan; 9(3):2516-2525. PubMed ID: 28026930
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hollow CoFe₂O₄ nanospheres as a high capacity anode material for lithium ion batteries.
    Wang Y; Su D; Ung A; Ahn JH; Wang G
    Nanotechnology; 2012 Feb; 23(5):055402. PubMed ID: 22238290
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of hydrogenation on the growth of carbon nanospheres and their performance as anode materials for rechargeable lithium-ion batteries.
    Zhao S; Fan Y; Zhu K; Zhang D; Zhang W; Chen S; Liu R; Yao M; Liu B
    Nanoscale; 2015 Feb; 7(5):1984-93. PubMed ID: 25537984
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The dealloying-lithiation/delithiation-realloying mechanism of a breithauptite (NiSb) nanocrystal embedded nanofabric anode for flexible Li-ion batteries.
    Chen R; Xue X; Lu J; Chen T; Hu Y; Ma L; Zhu G; Jin Z
    Nanoscale; 2019 May; 11(18):8803-8811. PubMed ID: 30998229
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combination of lightweight elements and nanostructured materials for batteries.
    Chen J; Cheng F
    Acc Chem Res; 2009 Jun; 42(6):713-23. PubMed ID: 19354236
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hollow/porous nanostructures derived from nanoscale metal-organic frameworks towards high performance anodes for lithium-ion batteries.
    Hu L; Chen Q
    Nanoscale; 2014; 6(3):1236-57. PubMed ID: 24356788
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MoO2-ordered mesoporous carbon hybrids as anode materials with highly improved rate capability and reversible capacity for lithium-ion battery.
    Chen A; Li C; Tang R; Yin L; Qi Y
    Phys Chem Chem Phys; 2013 Aug; 15(32):13601-10. PubMed ID: 23832242
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rational synthesis of carbon-coated hollow Ge nanocrystals with enhanced lithium-storage properties.
    Zhang W; Chu X; Chen C; Xiang J; Liu X; Huang Y; Hu X
    Nanoscale; 2016 Jun; 8(24):12215-20. PubMed ID: 27253080
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Germanium nanoparticles encapsulated in flexible carbon nanofibers as self-supported electrodes for high performance lithium-ion batteries.
    Li W; Yang Z; Cheng J; Zhong X; Gu L; Yu Y
    Nanoscale; 2014 May; 6(9):4532-7. PubMed ID: 24663690
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced lithium storage performances of hierarchical hollow MoS₂ nanoparticles assembled from nanosheets.
    Wang M; Li G; Xu H; Qian Y; Yang J
    ACS Appl Mater Interfaces; 2013 Feb; 5(3):1003-8. PubMed ID: 23331462
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Facile Preparation of Nb₂O
    Zhou W; Fang L; Long L; Wang L; Chen H; Li Y; Jia C
    J Nanosci Nanotechnol; 2019 Jan; 19(1):268-271. PubMed ID: 30327035
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An alumina stabilized ZnO-graphene anode for lithium ion batteries via atomic layer deposition.
    Yu M; Wang A; Wang Y; Li C; Shi G
    Nanoscale; 2014 Oct; 6(19):11419-24. PubMed ID: 25148141
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interconnected hollow carbon nanospheres for stable lithium metal anodes.
    Zheng G; Lee SW; Liang Z; Lee HW; Yan K; Yao H; Wang H; Li W; Chu S; Cui Y
    Nat Nanotechnol; 2014 Aug; 9(8):618-23. PubMed ID: 25064396
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Periodic organosilica hollow nanospheres as anode materials for lithium ion rechargeable batteries.
    Sasidharan M; Nakashima K; Gunawardhana N; Yokoi T; Ito M; Inoue M; Yusa S; Yoshio M; Tatsumi T
    Nanoscale; 2011 Nov; 3(11):4768-73. PubMed ID: 22002197
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Can all nitrogen-doped defects improve the performance of graphene anode materials for lithium-ion batteries?
    Yu YX
    Phys Chem Chem Phys; 2013 Oct; 15(39):16819-27. PubMed ID: 24002442
    [TBL] [Abstract][Full Text] [Related]  

  • 19. One-pot hydrothermal synthesis of peony-like Ag/Ag(0.68)V2O5 hybrid as high-performance anode and cathode materials for rechargeable lithium batteries.
    Wei D; Li X; Zhu Y; Liang J; Zhang K; Qian Y
    Nanoscale; 2014 May; 6(10):5239-44. PubMed ID: 24686721
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel titania hollow nanospheres of size 28 ± 1 nm using soft-templates and their application for lithium-ion rechargeable batteries.
    Sasidharan M; Nakashima K; Gunawardhana N; Yokoi T; Inoue M; Yusa S; Yoshio M; Tatsumi T
    Chem Commun (Camb); 2011 Jun; 47(24):6921-3. PubMed ID: 21589956
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.