BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 24931575)

  • 21. Three-dimensional Sn-graphene anode for high-performance lithium-ion batteries.
    Wang C; Li Y; Chui YS; Wu QH; Chen X; Zhang W
    Nanoscale; 2013 Nov; 5(21):10599-604. PubMed ID: 24057017
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Growth of linked silicon/carbon nanospheres on copper substrate as integrated electrodes for Li-ion batteries.
    Zhang Z; Wang Y; Tan Q; Li D; Chen Y; Zhong Z; Su F
    Nanoscale; 2014 Jan; 6(1):371-7. PubMed ID: 24201898
    [TBL] [Abstract][Full Text] [Related]  

  • 23. One-pot galvanic formation of ultrathin-shell Sn/CoO(x) nanohollows as high performance anode materials in lithium ion batteries.
    Xu J; Jin J; Kim K; Shin YJ; Kim HJ; Son SU
    Chem Commun (Camb); 2013 Jul; 49(53):5981-3. PubMed ID: 23715518
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Interconnected network of CoMoO₄ submicrometer particles as high capacity anode material for lithium ion batteries.
    Cherian CT; Reddy MV; Haur SC; Chowdari BV
    ACS Appl Mater Interfaces; 2013 Feb; 5(3):918-23. PubMed ID: 23276066
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Accurate hierarchical control of hollow crossed NiCo2O4 nanocubes for superior lithium storage.
    Guo H; Liu L; Li T; Chen W; Liu J; Guo Y; Guo Y
    Nanoscale; 2014 May; 6(10):5491-7. PubMed ID: 24728284
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Facile synthesis of loaf-like ZnMn₂O₄ nanorods and their excellent performance in Li-ion batteries.
    Bai Z; Fan N; Sun C; Ju Z; Guo C; Yang J; Qian Y
    Nanoscale; 2013 Mar; 5(6):2442-7. PubMed ID: 23403451
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Li4Ti5O12/TiO2 hollow spheres composed nanoflakes with preferentially exposed Li4Ti5O12 (011) facets for high-rate lithium ion batteries.
    Jiang YM; Wang KX; Wu XY; Zhang HJ; Bartlett BM; Chen JS
    ACS Appl Mater Interfaces; 2014 Nov; 6(22):19791-6. PubMed ID: 25333628
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Hierarchical mesoporous iron-based fluoride with partially hollow structure: facile preparation and high performance as cathode material for rechargeable lithium ion batteries.
    Lu Y; Wen Z; Jin J; Rui K; Wu X
    Phys Chem Chem Phys; 2014 May; 16(18):8556-62. PubMed ID: 24671146
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Multiwalled carbon nanotube@a-C@Co9S8 nanocomposites: a high-capacity and long-life anode material for advanced lithium ion batteries.
    Zhou Y; Yan D; Xu H; Liu S; Yang J; Qian Y
    Nanoscale; 2015 Feb; 7(8):3520-5. PubMed ID: 25629465
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Single electrospun porous NiO-ZnO hybrid nanofibers as anode materials for advanced lithium-ion batteries.
    Qiao L; Wang X; Qiao L; Sun X; Li X; Zheng Y; He D
    Nanoscale; 2013 Apr; 5(7):3037-42. PubMed ID: 23462740
    [TBL] [Abstract][Full Text] [Related]  

  • 31. In situ formation of hollow graphitic carbon nanospheres in electrospun amorphous carbon nanofibers for high-performance Li-based batteries.
    Chen Y; Lu Z; Zhou L; Mai YW; Huang H
    Nanoscale; 2012 Nov; 4(21):6800-5. PubMed ID: 23000946
    [TBL] [Abstract][Full Text] [Related]  

  • 32. La2O3 hollow nanospheres for high performance lithium-ion rechargeable batteries.
    Sasidharan M; Gunawardhana N; Inoue M; Yusa S; Yoshio M; Nakashima K
    Chem Commun (Camb); 2012 Mar; 48(26):3200-2. PubMed ID: 22344223
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Double-shelled nanocapsules of V2O5-based composites as high-performance anode and cathode materials for Li ion batteries.
    Liu J; Xia H; Xue D; Lu L
    J Am Chem Soc; 2009 Sep; 131(34):12086-7. PubMed ID: 19705911
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Preparation of fluorine-doped, carbon-encapsulated hollow Fe3O4 spheres as an efficient anode material for Li-ion batteries.
    Geng H; Zhou Q; Pan Y; Gu H; Zheng J
    Nanoscale; 2014 Apr; 6(7):3889-94. PubMed ID: 24598908
    [TBL] [Abstract][Full Text] [Related]  

  • 35. In situ thermally cross-linked polyacrylonitrile as binder for high-performance silicon as lithium ion battery anode.
    Shen L; Shen L; Wang Z; Chen L
    ChemSusChem; 2014 Jul; 7(7):1951-6. PubMed ID: 24782265
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Directly grown Si nanowire arrays on Cu foam with a coral-like surface for lithium-ion batteries.
    Jing S; Jiang H; Hu Y; Li C
    Nanoscale; 2014 Nov; 6(23):14441-5. PubMed ID: 25340678
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Synthesis of cobalt phosphides and their application as anodes for lithium ion batteries.
    Yang D; Zhu J; Rui X; Tan H; Cai R; Hoster HE; Yu DY; Hng HH; Yan Q
    ACS Appl Mater Interfaces; 2013 Feb; 5(3):1093-9. PubMed ID: 23312023
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Germanium-tin alloy nanocrystals for high-performance lithium ion batteries.
    Cho YJ; Kim CH; Im HS; Myung Y; Kim HS; Back SH; Lim YR; Jung CS; Jang DM; Park J; Lim SH; Cha EH; Bae KY; Song MS; Cho WI
    Phys Chem Chem Phys; 2013 Jul; 15(28):11691-5. PubMed ID: 23753000
    [TBL] [Abstract][Full Text] [Related]  

  • 39. MOF-Derived Porous Co3O4 Hollow Tetrahedra with Excellent Performance as Anode Materials for Lithium-Ion Batteries.
    Tian D; Zhou XL; Zhang YH; Zhou Z; Bu XH
    Inorg Chem; 2015 Sep; 54(17):8159-61. PubMed ID: 26262572
    [TBL] [Abstract][Full Text] [Related]  

  • 40. CuGeO₃ nanowires covered with graphene as anode materials of lithium ion batteries with enhanced reversible capacity and cyclic performance.
    Wu S; Wang R; Wang Z; Lin Z
    Nanoscale; 2014 Jul; 6(14):8350-8. PubMed ID: 24934278
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.