BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 24931797)

  • 21. Response acquisition with delayed reinforcement in a rodent model of attention-deficit/hyperactivity disorder (ADHD).
    Hand DJ; Fox AT; Reilly MP
    Behav Brain Res; 2006 Dec; 175(2):337-42. PubMed ID: 17034874
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Increased amygdala and decreased hippocampus volume after schedule-induced polydipsia in high drinker compulsive rats.
    Mora S; Merchán A; Aznar S; Flores P; Moreno M
    Behav Brain Res; 2020 Jul; 390():112592. PubMed ID: 32417273
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Response acquisition with signaled delayed reinforcement in a rodent model of ADHD.
    Hand DJ; Fox AT; Reilly MP
    Behav Brain Res; 2010 Dec; 213(2):155-60. PubMed ID: 20438767
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Spontaneously hypertensive rats show higher impulsive action, but equal impulsive choice with both positive and aversive consequences.
    González-Barriga F; Orduña V
    Behav Brain Res; 2022 Jun; 427():113858. PubMed ID: 35339564
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The behavior of spontaneously hypertensive and Wistar Kyoto rats under a paced fixed consecutive number schedule of reinforcement.
    Evenden J; Meyerson B
    Pharmacol Biochem Behav; 1999 May; 63(1):71-82. PubMed ID: 10340526
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of delayed reinforcers on the behavior of an animal model of attention-deficit/hyperactivity disorder (ADHD).
    Johansen EB; Sagvolden T; Kvande G
    Behav Brain Res; 2005 Jul; 162(1):47-61. PubMed ID: 15922066
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Increased schedule-induced polydipsia in the rat following subchronic treatment with MK-801.
    Hawken ER; Delva NJ; Reynolds JN; Beninger RJ
    Schizophr Res; 2011 Jan; 125(1):93-8. PubMed ID: 20719474
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Impulsive choice in a rodent model of attention-deficit/hyperactivity disorder.
    Fox AT; Hand DJ; Reilly MP
    Behav Brain Res; 2008 Feb; 187(1):146-52. PubMed ID: 17950930
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Comparison of SHR, WKY and Wistar rats in different behavioural animal models: effect of dopamine D1 and alpha2 agonists.
    Langen B; Dost R
    Atten Defic Hyperact Disord; 2011 Mar; 3(1):1-12. PubMed ID: 21432613
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Analyzing the magnitude effect in spontaneously hypertensive (SHR) and wistar Kyoto (WKY) rats.
    Aparicio CF; Malonson M; Hensley J
    Behav Processes; 2020 Dec; 181():104258. PubMed ID: 33035639
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A response strategy predicts acquisition of schedule-induced polydipsia in rats.
    Gregory JG; Hawken ER; Banasikowski TJ; Dumont EC; Beninger RJ
    Prog Neuropsychopharmacol Biol Psychiatry; 2015 Aug; 61():37-43. PubMed ID: 25816789
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mutual facilitation between activity-based anorexia and schedule-induced polydipsia in rats.
    Labajos MJ; Calcagni G; Pellón R
    Learn Behav; 2023 Dec; 51(4):502-520. PubMed ID: 36604387
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dissociation of hypertension and fixed interval responding in two separate strains of genetically hypertensive rat.
    Wickens JR; Macfarlane J; Booker C; McNaughton N
    Behav Brain Res; 2004 Jul; 152(2):393-401. PubMed ID: 15196808
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Sensitivity to delay of reinforcement in two animal models of attention deficit hyperactivity disorder (ADHD).
    Sutherland KR; Alsop B; McNaughton N; Hyland BI; Tripp G; Wickens JR
    Behav Brain Res; 2009 Dec; 205(2):372-6. PubMed ID: 19616039
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Baseline behavior, but not sensitivity to stimulant drugs, differs among spontaneously hypertensive, Wistar-Kyoto, and Sprague-Dawley rat strains.
    Ferguson SA; Paule MG; Cada A; Fogle CM; Gray EP; Berry KJ
    Neurotoxicol Teratol; 2007; 29(5):547-61. PubMed ID: 17689921
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Do psychoactive drugs have a therapeutic role in compulsivity? Studies on schedule-induced polydipsia.
    Martín-González E; Prados-Pardo Á; Mora S; Flores P; Moreno M
    Psychopharmacology (Berl); 2018 Feb; 235(2):419-432. PubMed ID: 29313138
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Relationship between ethanol and sucrose self-administration and schedule-induced polydipsia.
    Toscano CA; Kameyama M; Garcia-Mijares M; Silva MT; Santarem EM
    Pharmacol Biochem Behav; 2008 Oct; 90(4):586-9. PubMed ID: 18579192
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Applications of schedule-induced polydipsia in rodents for the study of an excessive ethanol intake phenotype.
    Ford MM
    Alcohol; 2014 May; 48(3):265-76. PubMed ID: 24680665
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Acquisition of schedule-induced polydipsia by rats in proximity to upcoming food delivery.
    López-Crespo G; Rodríguez M; Pellón R; Flores P
    Learn Behav; 2004 Nov; 32(4):491-9. PubMed ID: 15825889
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Schedule-induced polydipsia as a model of compulsive behavior: neuropharmacological and neuroendocrine bases.
    Moreno M; Flores P
    Psychopharmacology (Berl); 2012 Jan; 219(2):647-59. PubMed ID: 22113447
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.