These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 24931978)

  • 1. Pipasic: similarity and expression correction for strain-level identification and quantification in metaproteomics.
    Penzlin A; Lindner MS; Doellinger J; Dabrowski PW; Nitsche A; Renard BY
    Bioinformatics; 2014 Jun; 30(12):i149-56. PubMed ID: 24931978
    [TBL] [Abstract][Full Text] [Related]  

  • 2. mapDIA: Preprocessing and statistical analysis of quantitative proteomics data from data independent acquisition mass spectrometry.
    Teo G; Kim S; Tsou CC; Collins B; Gingras AC; Nesvizhskii AI; Choi H
    J Proteomics; 2015 Nov; 129():108-120. PubMed ID: 26381204
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Abundance estimation and differential testing on strain level in metagenomics data.
    Fischer M; Strauch B; Renard BY
    Bioinformatics; 2017 Jul; 33(14):i124-i132. PubMed ID: 28881972
    [TBL] [Abstract][Full Text] [Related]  

  • 4. EBprot: Statistical analysis of labeling-based quantitative proteomics data.
    Koh HW; Swa HL; Fermin D; Ler SG; Gunaratne J; Choi H
    Proteomics; 2015 Aug; 15(15):2580-91. PubMed ID: 25913743
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ProteoStats--a library for estimating false discovery rates in proteomics pipelines.
    Yadav AK; Kadimi PK; Kumar D; Dash D
    Bioinformatics; 2013 Nov; 29(21):2799-800. PubMed ID: 23962616
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Patpat: a public proteomics dataset search framework.
    Liao W; Zhang X
    Bioinformatics; 2023 Feb; 39(2):. PubMed ID: 36744907
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-throughput database search and large-scale negative polarity liquid chromatography-tandem mass spectrometry with ultraviolet photodissociation for complex proteomic samples.
    Madsen JA; Xu H; Robinson MR; Horton AP; Shaw JB; Giles DK; Kaoud TS; Dalby KN; Trent MS; Brodbelt JS
    Mol Cell Proteomics; 2013 Sep; 12(9):2604-14. PubMed ID: 23695934
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Correcting systematic bias and instrument measurement drift with mzRefinery.
    Gibbons BC; Chambers MC; Monroe ME; Tabb DL; Payne SH
    Bioinformatics; 2015 Dec; 31(23):3838-40. PubMed ID: 26243018
    [TBL] [Abstract][Full Text] [Related]  

  • 9. TaxIt: An Iterative Computational Pipeline for Untargeted Strain-Level Identification Using MS/MS Spectra from Pathogenic Single-Organism Samples.
    Kuhring M; Doellinger J; Nitsche A; Muth T; Renard BY
    J Proteome Res; 2020 Jun; 19(6):2501-2510. PubMed ID: 32362126
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DeuteRater: a tool for quantifying peptide isotope precision and kinetic proteomics.
    Naylor BC; Porter MT; Wilson E; Herring A; Lofthouse S; Hannemann A; Piccolo SR; Rockwood AL; Price JC
    Bioinformatics; 2017 May; 33(10):1514-1520. PubMed ID: 28093409
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative metaproteomics: functional insights into microbial communities.
    Pan C; Banfield JF
    Methods Mol Biol; 2014; 1096():231-40. PubMed ID: 24515373
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The OMSSAPercolator: an automated tool to validate OMSSA results.
    Wen B; Li G; Wright JC; Du C; Feng Q; Xu X; Choudhary JS; Wang J
    Proteomics; 2014 May; 14(9):1011-4. PubMed ID: 24504981
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Environmental proteomics: applications of proteome profiling in environmental microbiology and biotechnology.
    Lacerda CM; Reardon KF
    Brief Funct Genomic Proteomic; 2009 Jan; 8(1):75-87. PubMed ID: 19279070
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PANDA: A comprehensive and flexible tool for quantitative proteomics data analysis.
    Chang C; Li M; Guo C; Ding Y; Xu K; Han M; He F; Zhu Y
    Bioinformatics; 2019 Mar; 35(5):898-900. PubMed ID: 30816924
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Qupe--a Rich Internet Application to take a step forward in the analysis of mass spectrometry-based quantitative proteomics experiments.
    Albaum SP; Neuweger H; Fränzel B; Lange S; Mertens D; Trötschel C; Wolters D; Kalinowski J; Nattkemper TW; Goesmann A
    Bioinformatics; 2009 Dec; 25(23):3128-34. PubMed ID: 19808875
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MS1Connect: a mass spectrometry run similarity measure.
    Lin A; Deatherage Kaiser BL; Hutchison JR; Bilmes JA; Noble WS
    Bioinformatics; 2023 Feb; 39(2):. PubMed ID: 36702456
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Challenges and perspectives of metaproteomic data analysis.
    Heyer R; Schallert K; Zoun R; Becher B; Saake G; Benndorf D
    J Biotechnol; 2017 Nov; 261():24-36. PubMed ID: 28663049
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PANDA-view: an easy-to-use tool for statistical analysis and visualization of quantitative proteomics data.
    Chang C; Xu K; Guo C; Wang J; Yan Q; Zhang J; He F; Zhu Y
    Bioinformatics; 2018 Oct; 34(20):3594-3596. PubMed ID: 29790911
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A reference peptide database for proteome quantification based on experimental mass spectrum response curves.
    Liu W; Wei L; Sun J; Feng J; Guo G; Liang L; Fu T; Liu M; Li K; Huang Y; Zhu W; Zhen B; Wang Y; Ding C; Qin J
    Bioinformatics; 2018 Aug; 34(16):2766-2772. PubMed ID: 29617941
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design and analysis of quantitative differential proteomics investigations using LC-MS technology.
    Bukhman YV; Dharsee M; Ewing R; Chu P; Topaloglou T; Le Bihan T; Goh T; Duewel H; Stewart II; Wisniewski JR; Ng NF
    J Bioinform Comput Biol; 2008 Feb; 6(1):107-23. PubMed ID: 18324749
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.