These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

340 related articles for article (PubMed ID: 24931992)

  • 1. A statistical approach for inferring the 3D structure of the genome.
    Varoquaux N; Ay F; Noble WS; Vert JP
    Bioinformatics; 2014 Jun; 30(12):i26-33. PubMed ID: 24931992
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inference of 3D genome architecture by modeling overdispersion of Hi-C data.
    Varoquaux N; Noble WS; Vert JP
    Bioinformatics; 2023 Jan; 39(1):. PubMed ID: 36594573
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chromatin 3D structure reconstruction with consideration of adjacency relationship among genomic loci.
    Li FZ; Liu ZE; Li XY; Bu LM; Bu HX; Liu H; Zhang CM
    BMC Bioinformatics; 2020 Jul; 21(1):272. PubMed ID: 32611376
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3D Genome Reconstruction with ShRec3D+ and Hi-C Data.
    Li J; Zhang W; Li X
    IEEE/ACM Trans Comput Biol Bioinform; 2018; 15(2):460-468. PubMed ID: 26955049
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 3D chromosome modeling with semi-definite programming and Hi-C data.
    Zhang Z; Li G; Toh KC; Sung WK
    J Comput Biol; 2013 Nov; 20(11):831-46. PubMed ID: 24195706
    [TBL] [Abstract][Full Text] [Related]  

  • 6. miniMDS: 3D structural inference from high-resolution Hi-C data.
    Rieber L; Mahony S
    Bioinformatics; 2017 Jul; 33(14):i261-i266. PubMed ID: 28882003
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reconstruction of 3D genome architecture via a two-stage algorithm.
    Segal MR; Bengtsson HL
    BMC Bioinformatics; 2015 Nov; 16():373. PubMed ID: 26553003
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A maximum likelihood algorithm for reconstructing 3D structures of human chromosomes from chromosomal contact data.
    Oluwadare O; Zhang Y; Cheng J
    BMC Genomics; 2018 Feb; 19(1):161. PubMed ID: 29471801
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reconstructing high-resolution chromosome three-dimensional structures by Hi-C complex networks.
    Liu T; Wang Z
    BMC Bioinformatics; 2018 Dec; 19(Suppl 17):496. PubMed ID: 30591009
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Large-scale 3D chromatin reconstruction from chromosomal contacts.
    Zhang Y; Liu W; Lin Y; Ng YK; Li S
    BMC Genomics; 2019 Apr; 20(Suppl 2):186. PubMed ID: 30967119
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chromosome3D: reconstructing three-dimensional chromosomal structures from Hi-C interaction frequency data using distance geometry simulated annealing.
    Adhikari B; Trieu T; Cheng J
    BMC Genomics; 2016 Nov; 17(1):886. PubMed ID: 27821047
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A random effect model for reconstruction of spatial chromatin structure.
    Park J; Lin S
    Biometrics; 2017 Mar; 73(1):52-62. PubMed ID: 27214023
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Does multi-way, long-range chromatin contact data advance 3D genome reconstruction?
    Olshen AB; Segal MR
    BMC Bioinformatics; 2023 Feb; 24(1):64. PubMed ID: 36829114
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessing stationary distributions derived from chromatin contact maps.
    Segal MR; Fletez-Brant K
    BMC Bioinformatics; 2020 Feb; 21(1):73. PubMed ID: 32093610
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identifying statistically significant chromatin contacts from Hi-C data with FitHiC2.
    Kaul A; Bhattacharyya S; Ay F
    Nat Protoc; 2020 Mar; 15(3):991-1012. PubMed ID: 31980751
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inferring 3D chromatin structure using a multiscale approach based on quaternions.
    Caudai C; Salerno E; Zoppè M; Tonazzini A
    BMC Bioinformatics; 2015 Jul; 16():234. PubMed ID: 26220581
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Large-scale reconstruction of 3D structures of human chromosomes from chromosomal contact data.
    Trieu T; Cheng J
    Nucleic Acids Res; 2014 Apr; 42(7):e52. PubMed ID: 24465004
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hi-C: a method to study the three-dimensional architecture of genomes.
    van Berkum NL; Lieberman-Aiden E; Williams L; Imakaev M; Gnirke A; Mirny LA; Dekker J; Lander ES
    J Vis Exp; 2010 May; (39):. PubMed ID: 20461051
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ChromeBat: A Bio-Inspired Approach to 3D Genome Reconstruction.
    Collins B; Oluwadare O; Brown P
    Genes (Basel); 2021 Nov; 12(11):. PubMed ID: 34828363
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Probing long-range interactions by extracting free energies from genome-wide chromosome conformation capture data.
    Saberi S; Farré P; Cuvier O; Emberly E
    BMC Bioinformatics; 2015 May; 16():171. PubMed ID: 26001583
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.