BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

387 related articles for article (PubMed ID: 24931998)

  • 1. Ragout-a reference-assisted assembly tool for bacterial genomes.
    Kolmogorov M; Raney B; Paten B; Pham S
    Bioinformatics; 2014 Jun; 30(12):i302-9. PubMed ID: 24931998
    [TBL] [Abstract][Full Text] [Related]  

  • 2. AlignGraph: algorithm for secondary de novo genome assembly guided by closely related references.
    Bao E; Jiang T; Girke T
    Bioinformatics; 2014 Jun; 30(12):i319-i328. PubMed ID: 24932000
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multi-CAR: a tool of contig scaffolding using multiple references.
    Chen KT; Chen CJ; Shen HT; Liu CL; Huang SH; Lu CL
    BMC Bioinformatics; 2016 Dec; 17(Suppl 17):469. PubMed ID: 28155633
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chromosome assembly of large and complex genomes using multiple references.
    Kolmogorov M; Armstrong J; Raney BJ; Streeter I; Dunn M; Yang F; Odom D; Flicek P; Keane TM; Thybert D; Paten B; Pham S
    Genome Res; 2018 Nov; 28(11):1720-1732. PubMed ID: 30341161
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unicycler: Resolving bacterial genome assemblies from short and long sequencing reads.
    Wick RR; Judd LM; Gorrie CL; Holt KE
    PLoS Comput Biol; 2017 Jun; 13(6):e1005595. PubMed ID: 28594827
    [TBL] [Abstract][Full Text] [Related]  

  • 6. GAM-NGS: genomic assemblies merger for next generation sequencing.
    Vicedomini R; Vezzi F; Scalabrin S; Arvestad L; Policriti A
    BMC Bioinformatics; 2013; 14 Suppl 7(Suppl 7):S6. PubMed ID: 23815503
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ARKS: chromosome-scale scaffolding of human genome drafts with linked read kmers.
    Coombe L; Zhang J; Vandervalk BP; Chu J; Jackman SD; Birol I; Warren RL
    BMC Bioinformatics; 2018 Jun; 19(1):234. PubMed ID: 29925315
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Redundans: an assembly pipeline for highly heterozygous genomes.
    Pryszcz LP; Gabaldón T
    Nucleic Acids Res; 2016 Jul; 44(12):e113. PubMed ID: 27131372
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Completion of draft bacterial genomes by long-read sequencing of synthetic genomic pools.
    Derakhshani H; Bernier SP; Marko VA; Surette MG
    BMC Genomics; 2020 Jul; 21(1):519. PubMed ID: 32727443
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SLR: a scaffolding algorithm based on long reads and contig classification.
    Luo J; Lyu M; Chen R; Zhang X; Luo H; Yan C
    BMC Bioinformatics; 2019 Oct; 20(1):539. PubMed ID: 31666010
    [TBL] [Abstract][Full Text] [Related]  

  • 11. RResolver: efficient short-read repeat resolution within ABySS.
    Nikolić V; Afshinfard A; Chu J; Wong J; Coombe L; Nip KM; Warren RL; Birol I
    BMC Bioinformatics; 2022 Jun; 23(1):246. PubMed ID: 35729491
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation and Validation of Assembling Corrected PacBio Long Reads for Microbial Genome Completion via Hybrid Approaches.
    Lin HH; Liao YC
    PLoS One; 2015; 10(12):e0144305. PubMed ID: 26641475
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessing the impact of exact reads on reducing the error rate of read mapping.
    Salari F; Zare-Mirakabad F; Sadeghi M; Rokni-Zadeh H
    BMC Bioinformatics; 2018 Nov; 19(1):406. PubMed ID: 30400807
    [TBL] [Abstract][Full Text] [Related]  

  • 14. HGA: de novo genome assembly method for bacterial genomes using high coverage short sequencing reads.
    Al-Okaily AA
    BMC Genomics; 2016 Mar; 17():193. PubMed ID: 26945881
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improving the sensitivity of long read overlap detection using grouped short k-mer matches.
    Du N; Chen J; Sun Y
    BMC Genomics; 2019 Apr; 20(Suppl 2):190. PubMed ID: 30967123
    [TBL] [Abstract][Full Text] [Related]  

  • 16. AlignGraph2: similar genome-assisted reassembly pipeline for PacBio long reads.
    Huang S; He X; Wang G; Bao E
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33621981
    [TBL] [Abstract][Full Text] [Related]  

  • 17. NeatFreq: reference-free data reduction and coverage normalization for De Novo sequence assembly.
    McCorrison JM; Venepally P; Singh I; Fouts DE; Lasken RS; Methé BA
    BMC Bioinformatics; 2014 Nov; 15(1):357. PubMed ID: 25407910
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A spectral algorithm for fast de novo layout of uncorrected long nanopore reads.
    Recanati A; Brüls T; d'Aspremont A
    Bioinformatics; 2017 Oct; 33(20):3188-3194. PubMed ID: 28605450
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Benchmarking of de novo assembly algorithms for Nanopore data reveals optimal performance of OLC approaches.
    Cherukuri Y; Janga SC
    BMC Genomics; 2016 Aug; 17 Suppl 7(Suppl 7):507. PubMed ID: 27556636
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Performance comparison of second- and third-generation sequencers using a bacterial genome with two chromosomes.
    Miyamoto M; Motooka D; Gotoh K; Imai T; Yoshitake K; Goto N; Iida T; Yasunaga T; Horii T; Arakawa K; Kasahara M; Nakamura S
    BMC Genomics; 2014 Aug; 15(1):699. PubMed ID: 25142801
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.