These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 24932006)

  • 1. Inductive matrix completion for predicting gene-disease associations.
    Natarajan N; Dhillon IS
    Bioinformatics; 2014 Jun; 30(12):i60-68. PubMed ID: 24932006
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep Collaborative Filtering for Prediction of Disease Genes.
    Zeng X; Lin Y; He Y; Lu L; Min X; Rodriguez-Paton A
    IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(5):1639-1647. PubMed ID: 30932845
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inferring disease and gene set associations with rank coherence in networks.
    Hwang T; Zhang W; Xie M; Liu J; Kuang R
    Bioinformatics; 2011 Oct; 27(19):2692-9. PubMed ID: 21824970
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stable solution to l
    Biswas AK; Kim D; Kang M; Ding C; Gao JX
    BMC Med Genomics; 2017 Dec; 10(Suppl 5):77. PubMed ID: 29297358
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Robust Inductive Matrix Completion Strategy to Explore Associations Between LincRNAs and Human Disease Phenotypes.
    Biswas AK; Kim DC; Kang M; Gao JX
    IEEE/ACM Trans Comput Biol Bioinform; 2019; 16(6):2066-2077. PubMed ID: 29994224
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting human microbe-disease associations via graph attention networks with inductive matrix completion.
    Long Y; Luo J; Zhang Y; Xia Y
    Brief Bioinform; 2021 May; 22(3):. PubMed ID: 32725163
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Disease gene prioritization by integrating tissue-specific molecular networks using a robust multi-network model.
    Ni J; Koyuturk M; Tong H; Haines J; Xu R; Zhang X
    BMC Bioinformatics; 2016 Nov; 17(1):453. PubMed ID: 27829360
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DRIMC: an improved drug repositioning approach using Bayesian inductive matrix completion.
    Zhang W; Xu H; Li X; Gao Q; Wang L
    Bioinformatics; 2020 May; 36(9):2839-2847. PubMed ID: 31999326
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neural inductive matrix completion with graph convolutional networks for miRNA-disease association prediction.
    Li J; Zhang S; Liu T; Ning C; Zhang Z; Zhou W
    Bioinformatics; 2020 Apr; 36(8):2538-2546. PubMed ID: 31904845
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A knowledge-based approach for predicting gene-disease associations.
    Zhou H; Skolnick J
    Bioinformatics; 2016 Sep; 32(18):2831-8. PubMed ID: 27283949
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prioritization of candidate disease genes by enlarging the seed set and fusing information of the network topology and gene expression.
    Zhang SW; Shao DD; Zhang SY; Wang YB
    Mol Biosyst; 2014 Jun; 10(6):1400-8. PubMed ID: 24695957
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Associating genes and protein complexes with disease via network propagation.
    Vanunu O; Magger O; Ruppin E; Shlomi T; Sharan R
    PLoS Comput Biol; 2010 Jan; 6(1):e1000641. PubMed ID: 20090828
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CGMIM: automated text-mining of Online Mendelian Inheritance in Man (OMIM) to identify genetically-associated cancers and candidate genes.
    Bajdik CD; Kuo B; Rusaw S; Jones S; Brooks-Wilson A
    BMC Bioinformatics; 2005 Mar; 6():78. PubMed ID: 15796777
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The power of protein interaction networks for associating genes with diseases.
    Navlakha S; Kingsford C
    Bioinformatics; 2010 Apr; 26(8):1057-63. PubMed ID: 20185403
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Drug repositioning based on the target microRNAs using bilateral-inductive matrix completion.
    Deepthi K; Jereesh AS
    Mol Genet Genomics; 2020 Sep; 295(5):1305-1314. PubMed ID: 32583015
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A network-based method for predicting disease-causing genes.
    Karni S; Soreq H; Sharan R
    J Comput Biol; 2009 Feb; 16(2):181-9. PubMed ID: 19193144
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction of circRNA-disease associations based on inductive matrix completion.
    Li M; Liu M; Bin Y; Xia J
    BMC Med Genomics; 2020 Apr; 13(Suppl 5):42. PubMed ID: 32241268
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction of lncRNA-disease associations based on inductive matrix completion.
    Lu C; Yang M; Luo F; Wu FX; Li M; Pan Y; Li Y; Wang J
    Bioinformatics; 2018 Oct; 34(19):3357-3364. PubMed ID: 29718113
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predicting miRNA-disease association based on inductive matrix completion.
    Chen X; Wang L; Qu J; Guan NN; Li JQ
    Bioinformatics; 2018 Dec; 34(24):4256-4265. PubMed ID: 29939227
    [TBL] [Abstract][Full Text] [Related]  

  • 20. HyDRA: gene prioritization via hybrid distance-score rank aggregation.
    Kim M; Farnoud F; Milenkovic O
    Bioinformatics; 2015 Apr; 31(7):1034-43. PubMed ID: 25411330
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.