These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 24932594)

  • 1. Interfacial mobility scale determines the scale of collective motion and relaxation rate in polymer films.
    Hanakata PZ; Douglas JF; Starr FW
    Nat Commun; 2014 Jun; 5():4163. PubMed ID: 24932594
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A unifying framework to quantify the effects of substrate interactions, stiffness, and roughness on the dynamics of thin supported polymer films.
    Hanakata PZ; Pazmiño Betancourt BA; Douglas JF; Starr FW
    J Chem Phys; 2015 Jun; 142(23):234907. PubMed ID: 26093579
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Collective Motion in the Interfacial and Interior Regions of Supported Polymer Films and Its Relation to Relaxation.
    Zhang W; Starr FW; Douglas JF
    J Phys Chem B; 2019 Jul; 123(27):5935-5941. PubMed ID: 31192601
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic heterogeneity and collective motion in star polymer melts.
    Fan J; Emamy H; Chremos A; Douglas JF; Starr FW
    J Chem Phys; 2020 Feb; 152(5):054904. PubMed ID: 32035474
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of a "bound" substrate layer on the dynamics of supported polymer films.
    Zhang W; Douglas JF; Starr FW
    J Chem Phys; 2017 Jul; 147(4):044901. PubMed ID: 28764335
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reconciling computational and experimental trends in the temperature dependence of the interfacial mobility of polymer films.
    Zhang W; Starr FW; Douglas JF
    J Chem Phys; 2020 Mar; 152(12):124703. PubMed ID: 32241151
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mobility in thin polymer films ranging from local segmental motion, Rouse modes to whole chain motion: a coupling model consideration.
    Ngai KL
    Eur Phys J E Soft Matter; 2002 May; 8(2):225-35. PubMed ID: 15010972
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of substrate interactions on the glass transition and length-scale of correlated dynamics in ultra-thin molecular glass films.
    Zhang Y; Woods CN; Alvarez M; Jin Y; Riggleman RA; Fakhraai Z
    J Chem Phys; 2018 Nov; 149(18):184902. PubMed ID: 30441931
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Does equilibrium polymerization describe the dynamic heterogeneity of glass-forming liquids?
    Douglas JF; Dudowicz J; Freed KF
    J Chem Phys; 2006 Oct; 125(14):144907. PubMed ID: 17042650
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The interfacial zone in thin polymer films and around nanoparticles in polymer nanocomposites.
    Zhang W; Emamy H; Pazmiño Betancourt BA; Vargas-Lara F; Starr FW; Douglas JF
    J Chem Phys; 2019 Sep; 151(12):124705. PubMed ID: 31575170
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cooperative strings and glassy interfaces.
    Salez T; Salez J; Dalnoki-Veress K; Raphaël E; Forrest JA
    Proc Natl Acad Sci U S A; 2015 Jul; 112(27):8227-31. PubMed ID: 26100908
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Activation free energy gradient controls interfacial mobility gradient in thin polymer films.
    Zhang W; Starr FW; Douglas JF
    J Chem Phys; 2021 Nov; 155(17):174901. PubMed ID: 34742183
    [TBL] [Abstract][Full Text] [Related]  

  • 13. String-like collective motion and diffusion in the interfacial region of ice.
    Wang X; Tong X; Zhang H; Douglas JF
    J Chem Phys; 2017 Nov; 147(19):194508. PubMed ID: 29166091
    [TBL] [Abstract][Full Text] [Related]  

  • 14. String-like collective atomic motion in the melting and freezing of nanoparticles.
    Zhang H; Kalvapalle P; Douglas JF
    J Phys Chem B; 2011 Dec; 115(48):14068-76. PubMed ID: 21718061
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamical heterogeneity in a vapor-deposited polymer glass.
    Zhang W; Douglas JF; Starr FW
    J Chem Phys; 2017 May; 146(20):203310. PubMed ID: 28571350
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glass transition behaviour of thin polymer films coated on the 3D networks of porous CNT sponges.
    Wang M; Zhang J; Zhou S; Yang Z; Zhang X
    Phys Chem Chem Phys; 2020 Sep; 22(37):21297-21306. PubMed ID: 32935675
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polymer brushes: a controllable system with adjustable glass transition temperature of fragile glass formers.
    Xie SJ; Qian HJ; Lu ZY
    J Chem Phys; 2014 Jan; 140(4):044901. PubMed ID: 25669577
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exploring the broadening and the existence of two glass transitions due to competing interfacial effects in thin, supported polymer films.
    Glor EC; Angrand GV; Fakhraai Z
    J Chem Phys; 2017 May; 146(20):203330. PubMed ID: 28571332
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glass transition and molecular mobility in polymer thin films.
    Inoue R; Kanaya T; Nishida K; Tsukushi I; Telling MT; Gabrys BJ; Tyagi M; Soles C; Wu WL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Sep; 80(3 Pt 1):031802. PubMed ID: 19905138
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The relationship of dynamical heterogeneity to the Adam-Gibbs and random first-order transition theories of glass formation.
    Starr FW; Douglas JF; Sastry S
    J Chem Phys; 2013 Mar; 138(12):12A541. PubMed ID: 23556792
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.